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FOREWORD

This book has been written to cover the ‘Cambridge O Level Additional Mathematics (4037)’ and the
‘Cambridge IGCSE® Additional Mathematics (0606)° courses over a one-year period.

These syllabuses enable learners to extend the mathematics skills, knowledge, and understanding developed
in the Cambridge IGCSE or O Level Mathematics courses, and use skills in the context of more advanced
techniques.

The syllabuses have a Pure Mathematics only content which enables learners to acquire a suitable foundation
in mathematics for further study in the subject. Knowledge of the content of the Cambridge IGCSE or O
Level Mathematics syllabus (or an equivalent syllabus) is assumed.

Learners who successfully complete these courses gain lifelong skills, including:
¢ the further development of mathematical concepts and principles
® an ability to solve problems, present solutions logically, and interpret results.

This book is an attempt to cover, in one volume, the content outlined in the Cambridge O Level Additional
Mathematics (4037) and Cambridge IGCSE Additional Mathematics (0606) syllabuses. The book can be
used as a preparation for GCE Advanced Level Mathematics. The book has been endorsed by Cambridge.

To reflect the principles on which the course is based, we have attempted to produce a book and CD package
that embraces understanding and problem solving in order to give students different learning experiences.
Review exercises appear at the end of each chapter. Answers are given at the end of the book, followed by an
index.

The interactive CD contains =) Self Tutor software (see p. 5), geometry and graphics software,
demonstrations and simulations. The CD also contains the text of the book so that students can load it on a
home computer and keep the textbook at school.

The examinations for Cambridge Additional Mathematics are in the form of two papers. Many of the
problems in this textbook have been written to reflect the style of the examination questions. The questions,
worked solutions and comments that appear in the book and CD were written by the authors.

The book can be used as a scheme of work but it is expected that the teacher will choose the order of topics.
Exercises in the book range from routine practice and consolidation of basic skills, to problem solving
exercises that are quite demanding.

In this changing world of mathematics education, we believe that the contextual approach shown in this book
will enhance the students’ understanding, knowledge and appreciation of mathematics, and its universal
application.

We welcome your feedback.

Email: info@haesemathematics.com.au
Web: www.haesemathematics.com.au PMH, SHH, MH, CS
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USING THE INTERACTIVE CD

The interactive Student CD that comes with this book is designed for those who

want to utilise technology in teaching and learning Mathematics. f«&;’::e Mﬂfhe:;:;’ﬁx
. . . /“
The CD icon that appears throughout the book denotes an active link on the CD. ,N“mﬁunm ’
Simply click on the icon when running the CD to access a large range of interactive 7
features that includes: o e 3&,,, )
. Cambridge =
e printable worksheets Additional $2:65
¢ graphing packages Mathematics
. INTERACTIVE LINK . o1
e demonstrations e
. snn.u!atlons o
® revision games | N
e SELF TUTOR

SELF TUTOR is an exciting feature of this book.

The =) Self Tutor icon on each worked example denotes an active link on the CD.

Simply ‘click’ on the =) Self Tutor (or anywhere in the example box) to access the worked

example, with a teacher’s voice explaining each step necessary to reach the answer.
ple, p g p Yy

Play any line as often as you like. See how the basic processes come alive using movement and

colour on the screen.

Ideal for students who have missed lessons or need extra help.

~

Example 10 w) Self Tutor

Find the two angles 6 on the unit circle, with 0 < € < 27, such that:

b sin9:% ¢ tanf =2

¢ tan"1(2) ~ 1.11

0~1.23 or 2w —1.23 oo 0~0.848 or w—0.848 c. 0~1.11 or m+1.11
0 ~1.23 or 5.05 ;. 0 ~0.848 or 2.29 ~ 1.11 or 4.25

See Chapter 8, The unit circle and radian measure, page 209



SYMBOLS AND NOTATION USED IN THIS BOOK

N the set of natural numbers, {1, 2, 3, ....}
Z the set of integers, {0, =1, +2, +3, ....}
VA the set of positive integers, {1, 2, 3, ....}
Q the set of rational numbers
Qt the set of positive rational numbers, {z € Q, z > 0}
R the set of real numbers
R* the set of positive real numbers, {z € R, = > 0}
[a, b] the closed interval {z € R:a <z < b}
[a, b) the interval {z € R:a <z < b}
(a, b] the interval {z e R:a <z < b}
(a, ) the open interval {z € R:a <z < b}
{1, 22, ....} the set with elements z1, zo, ....
n(A) the number of elements in the finite set A
{z: .. the set of all  such that
€ is an element of
¢ is not an element of
@ or {} the empty set
¢ the universal set
union
N intersection
C is a subset of
C is a proper subset of
¢ is not a subset of
¢ is not a proper subset of
A the complement of the set A

a~, Ya a to the power of 1, nth root of @ (if @ >0 then {/a > 0)
n

a2, +/a a to the power %, square root of a (if a >0 then +/a > 0)

. for >0 R
|z] the modulus or absolute value of x, that is . z2l, =€
—xfor <0, z€R
= identity or is equivalent to
~ is approximately equal to
n! n factorial for n € N (0! =1)
|
(”) the binomial coefficient ———— for nreN, 0<r<n
r rl(n —r)!
> is greater than
> or > is greater than or equal to
< is less than

< or < is less than or equal to



f'(x)
f'(=)
fy dx

ff y dx
e
o
lgx
Inz
log, =

sin, cos, tan,

cosec, sec, cot

Az, y)

AB

~

A
CAB
AABC

ar+ag+....+ay

function f

f 1s a function under which z is mapped to y
the image of = under the function f

the inverse function of the function f

the composite function of f and g

the limit of f(z) as « tends to a

the derivative of y with respect to x

the second derivative of y with respect to x

the derivative of f(z) with respect to
the second derivative of f(z) with respect to x

the indefinite integral of y with respect to x

the definite integral of y with respect to « for values of = between a and b
base of natural logarithms

exponential function of =

logarithm of x to base 10

natural logarithm of z

logarithm to the base a of x

the circular functions

the point A in the plane with Cartesian coordinates = and y

the line segment with endpoints A and B
the distance from A to B
the line containing points A and B

the angle at A

the angle between CA and AB
the triangle whose vertices are A, B, and C

the vector a

the vector represented in magnitude and direction by the directed line segment
from A to B
the magnitude of vector a

the magnitude of AB

unit vectors in the directions of the Cartesian coordinate axes
a matrix M

the inverse of the square matrix M

the determinant of the square matrix M
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12 Sets and Venn diagrams (Chapter 1)

Opening problem

A city has three football teams in the national league: A, B, and C.

In the last season, 20% of the city’s population saw team A play, 24% saw team B, and 28% saw
team C. Of these, 4% saw both A and B, 5% saw both A and C, and 6% saw both B and C.
1% saw all three teams play.

Things to think about:

a Writing out all of this information in sentences is very
complicated. How can we represent this information more
simply on a diagram?

b What percentage of the population:

i saw only team A play
il saw team A or team B play but not team C
ifi did not see any of the teams play?

ffsers

SET NOTATION

A set is a collection of numbers or objects.

For example:
o the set of digits which we use to write numbers is {0, 1, 2, 3,4, 5,6, 7, 8, 9}

e if V is the set of all vowels, then V = {a, e, 1, o, u}.
The numbers or objects in a set are called the elements or members of the set.

We use the symbol € to mean is an element of and ¢ to mean is not an element of.

So, for the set A ={1,2,3,4,5,6,7} wecansay 4€ A but 9¢ A.
The set { } or @ is called the empty set and contains no elements.

SPECIAL NUMBER SETS

The following is a list of some special number sets you should be familiar with:

The set of natural
numbers N is often
defined to include 0.

e N=1{1,2,3,4,5,6,7, ..} isthe set of all natural or counting numbers.

o 7 =40, 1, £2, +3, £4, ...} is the set of all integers.

o ZT=1{1,2,3,4,5,6,7, ..} is the set of all positive integers.

o 7~ ={-1,-2,-3, —4, =5, ...} is the set of all negative integers.

e @ is the set of all rational numbers, or numbers which can be written in
the form g where p and q are integers and ¢ # 0.

e R is the set of all real numbers, which are all numbers which can be placed
on the number line.
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COUNTING ELEMENTS OF SETS

The number of elements in set A is written n(A).
For example, the set A = {2, 3, 5, 8, 13, 21} has 6 elements, so we write n(A) = 6.

A set which has a finite number of elements is called a finite set.

For example: A = {2, 3,5, 8, 13, 21} is a finite set.
@ is also a finite set, since n () = 0.

Infinite sets are sets which have infinitely many elements.

For example, the set of positive integers {1, 2, 3, 4, ...} does not have a largest element, but rather keeps
on going forever. It is therefore an infinite set.

In fact, the sets N, Z, ZT, Z—, Q, and R are all infinite sets.

SUBSETS

Suppose A and B are two sets. A is a subset of B if every element
of A is also an element of B. We write A C B.

For example, {2, 3,5} C {1, 2, 3,4, 5, 6} as every element in the first set is also in the second set.

A is a proper subset of B if A is a subset of B but is not equal to B.
We write A C B.

For example, Z C Q since any integer n = % € Q. However,  €Q but ;¢ Z.

We use A ¢ B to indicate that A is not a subset of B
and A ¢ B to indicate that A is not a proper subset of B.

UNION AND INTERSECTION

If A and B are two sets, then -
Every element in A

e ANB is the intersection of A and B, and consists of and every element in B
all elements which are in both A and B is found in A U B.

e AU B is the union of A and B, and consists of all
elements which are in A or B.

For example:

o If A=1{1,3,4} and B = {2,3,5} then ANB = {3} DEMO
and AUB = {1, 2, 3, 4, 5}. o a

e The set of integers is made up of the set of negative integers, zero, - K
and the set of positive integers: Z = (Z~ U{0} UZ™)
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DISJOINT SETS

Two sets are disjoint or mutually exclusive if they have no elements in common.

If A and B are disjoint then AN B = 2.

Example 1 ) Self Tutor
M =1{2,3,5789} and N = {3,4,6,9, 10} To write down M U N,
B . start with M and add to
a True or false? i 4eM ii 6¢M it the elements of N
b List the sets: i MNN ii MUN which are not in M.
c Is i MCN ii {9,6,3} C N? A\

a i 4 is not an element of M, so 4 € M is false.
ii 6 is not an element of M, so 6 ¢ M is true.
b i MnNN ={3,9} since 3 and9 are elements of both
sets.
ii Every element which is in either M or N is in the
union of M and N.
MUN ={2,3,4,5,6,7,8,9, 10}

¢ i No. Not every element of M is an element of V.
ii Yes, as 9, 6, and 3 are also in V.

EXERCISE 1A

1 Write using set notation:

a b5 is an element of set D b 6 is not an element of set G

¢ d is not an element of the set of all English vowels

d {2, 5} is a subset of {1, 2, 3, 4, 5, 6} e {3,8, 6} is not a subset of {1, 2, 3, 4, 5, 6}.
Find i AnNB i AUB for

a A={6,7,9,11,12} and B = {5, 8, 10, 13, 9}

b A={1,2,34} and B={5,6,7,8}

¢c A={1,3,57 and B=1{1,213,4,5,6,7,8,9}

Suppose A = {0, 3,5, 8, 14} and B = {1, 4, 5, 8, 11, 13}. Write down the number of elements in:

a A b B c AnB d AUB
True or false?

a ZtCN b NCZ ¢c N=z% d Z-CZ

e Qcz f {0}CZ g ZCQ h ZTUuZ- =%

Describe the following sets as either finite or infinite:
a the set of counting numbers between 10 and 20
b the set of counting numbers greater than 5
c the set of all rational numbers Q
d the set of all rational numbers between 0 and 1.
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6 True or false?
a 127¢N b BcQ c 31 ¢Q d —1€Q

7 Which of these pairs of sets are disjoint?
a A={3,5179} and B = {2, 4, 6, 8} b P={3,56,72_8, 10} and Q = {4, 9, 10}

8 True or false? If R and S are two non-empty sets and RN.S = &, then R and S are disjoint.

9 a How many proper subsets does the set {a, b, ¢, d} have?

b Copy and complete: “If a set has n elements then it has ...... proper subsets.”

"1 INTERVAL NOTATION

To avoid having to list all members of a set, we often use a general description of its members. We often
describe a set of all values of x with a particular property.

2

The notation {z : ...... }oor {z]... } is used to describe “the set of all « such that ...... .

For example:

e A={x€Z: —2<x<4} reads “the set of all integers = such that = is between
A

L such that —2 and 4, including —2 and 4.”
the set of all

We can represent A on a number line as: -—

A is a finite set, and n(A) = 7.

e B={reR: —2<z <4} reads “the set of all real = such that x is greater than or
equal to —2 and less than 4.”

) afilled in circle indicates an open circle indicates
We represent B on a number line as: _92isincluded 4is not included
: :
=2 0 4

B is an infinite set, and n(B) = co.
We could also write B = {z : —2 < & < 4}, in which case we would assume that = € R.

Example 2 ) Self Tutor

Suppose A ={zx€Z:3 <z <10}
a Write down the meaning of the interval notation.
b List the elements of set A. ¢ Find n(A).

a The set of all integers x such that x is between 3 and 10, including 10.
b A={4,56,778,9, 10} ¢ There are 7 elements, so n(A) =7.
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CLOSED AND OPEN INTERVALS

An interval is a connected subset of the number line R.
An interval is closed if both of its endpoints are included.

An interval is open if both of its endpoints are not included.

For z € R, we commonly use the following notation to concisely write intervals:

[a, b] represents the closed interval {z € R : a <z < b} T dhaiae TelEten i e
[a, b) represents the interval {zeR : a<z<b} needed for the syllabus.
(a, b] represents the interval {zreR : a<z<b} \

(a, b) represents the open interval {z €R : a <z <b}

An interval which extends to infinity has no defined endpoint.
So, for {z € R: x> a} we write [a, 00).

INTERVALS WHICH OVERLAP

When two intervals overlap, we consolidate them into a single interval.

For example: [-2,5)U[l,7)=[-2,7) ° 0

|

o

= @

ot
O~ o

sY

EXERCISE 1B

1 Explain whether the following sets are finite or infinite:

a {zr€Z:-2<z<1} b {reR:-2<z<1} ¢c {reZ:z>5}
d {zxeQ:0<z<1} e (2,4) f [-3,7
g (_OO>0)

2 For the following sets: In this course

i Write down the meaning of the interval notation. 0¢N.
i If possible, list the elements of A.
i Find n(A).

iv If possible, sketch A on a number line.

a A={ze€Z:-1<z<T7} b A={zreN:-2<z<8}

c A={zeR:0<z<1} d A={zcQ:5<z<6}

e A=[-1,5) f A={zeR:3<2<5Uxz>T}
g A= (-o00,1]U(2, o0) h A= (—00,2)UJl, c0)

3 Write in interval notation:
a the set of all integers between —100 and 100
b the set of all real numbers greater than 1000
¢ the set of all rational numbers between 2 and 3, including 2 and 3.
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4 Write using interval notation:

a {2 -1,0,1,2 3 b {..—6 -5 —4, —3}

c o o d — o o—>»>
T3 2 1 0 1 2 =% 0 1 2 3 4 5 =

5 State whether A C B: [If A is not a subset of B,

a A=92, B=1{2,5,7,9} we write A ¢ B.

b A=1{25389), B={8 9

c A={zeR:2<2<3}, B={zeR} v

d A={2€Q:3<2<9}, B={zeR:0<z<10}

e A={2e€Z:-10<x<10}, B={2€Z:0<z<5} 'wa

f A={zcQ:0<z<1}, B={yeQ:0<y<2}

6 For each of the following sets, determine whether the interval described is closed, open, or neither:
a [2,5) b (-1, 3) c (—oo,—4] d (4, ) e [-2,2] f [0, 11)

7 Given that Q is the set of rational numbers, we can define
Q™ as the set of positive rational numbers, {x € Q : x > 0}
and Q as the set of positive rational numbers and zero, {z € Q : z > 0}.

a Explain why the set Q cannot be illustrated on a number line.

b Describe in words, in interval notation, and using a number line, what would be meant by the set:
i R il R

" [RELATIONS

A relation is any set of points which connect two variables.

You should be familiar with points (x, y) in the Cartesian plane. Y

Any set of these points is a relation.

o
4

For example: v

o {(x,y):y =22+ 3} is the set of points o {(z, y):2®+y*> =4} is the set of points

which form a straight line with gradient 2 and which form a circle with radius 2 units centred
y-intercept 3. at the origin.
AY Ly
=2z+3
3 A

Ky

(0) -

Y

A
-
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EXERCISE 1C
GRAPHING

1 [Illustrate the following sets in the Cartesian plane. In each case state whether the set is PACKAGE
finite or infinite. I

a {(z,y):y=u} b {(z,y):x2+y=1} g ‘
¢ {(z,y):2>0, y>0} d {(z,y):z+y>1} RK
2 Let A be the set of points in each graph below. State whether A is finite or infinite.
a Ay b Ay ¢ Ay
A
- 5 - 5 .- 5

v \J

3 Suppose A is the set of points which define a straight line
and B is the set of points which define a circle.

a Describe in words the meaning of: i ANnB ii AuB
b Describe, with illustration, what it means if n(AN B) equals: i 2 i1 iii 0

/| COMPLEMENTS OF SETS

UNIVERSAL SETS

Suppose we are only interested in the natural numbers from 1 to 20, and we want to consider subsets of this
set. We say the set € = {x € N: 1 < x <20} is the universal set in this situation.

The symbol € is used to represent the universal set under consideration.

COMPLEMENTARY SETS
The complement of A, denoted A’, is the set of all elements of € which are not in A.
A={zeé:z¢ A}

For example, if the universal set € = {1, 2, 3, 4, 5, 6, 7, 8}, and the set A = {1, 3, 5, 7, 8}, then the
complement of A is A’ = {2, 4, 6}.

Three obvious relationships are observed connecting A and A’. These are:

e ANA'=2 as A’ and A have no common members.
e AUA =¢ asall elements of A and A’ combined make up €.

o n(4)+n(A) =n(¥)

For example, QNQ =@ and QUQ =R.
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Example 3 ) Self Tutor
Find C’ given that:

a ¢ = {all positive integers} and C = {all even integers}
b C={z€Z:z2>2} and €=7%Z

a (' = {all odd integers} b ¢'={z€Z:z<1}

Example 4 ) Self Tutor

Suppose €={z€Z:-5<x<b}, A={zre€Z:1<x<4}, and
B={x€Z:—-3<x<2}. Listthe elements of:

a A b B c A d B

e ANB f AUB g ANnB h AuB

a A={1,23, 4} b B={-3 -2 -1,0,1}

¢ A ={-5 —4,-3,-2,-1,0,5} d B ={-5 -4,2 34,5}

e ANB=1{1} f AUB={-3, -2 -1,0,1,2, 3,4}

g ANB={-3 -2 -1,0} h AUB ={-5, -4, -3, -2, -1,0,2, 3,4, 5}

EXERCISE 1D
1 Find the complement of C' given that:
a & = {letters of the English alphabet} and C = {vowels}
b ¢ = {integers} and C = {negative integers}
¢ ¢=Z and C={zx€Z:x< -5}
d ¢=Q and C={2€Q:z<2Uz>8}

2 Suppose €={r€Z:0<x<8}, A={x€Z:2<x<7}, and B={z€Z:5<xz<8}.
List the elements of:

a A b A ¢ B d B

e ANnB f AuUuB g AnDB h AuB
3 Suppose P and Q' are subsets of €. n(8) =15, n(P) =6, and n(Q’') =4. Find:

a n(P') b n(Q)

4 True or false?
a If n(¢) =a and n(4A) =b where AC ¢, then n(4')=b—a.
b IfQisasubsetof @then Q' ={xecE:z¢Q}.

5 Suppose €={r€Z:0<x<12}, A={zxe€Z:2<z<T},
B={z€Z:3<z<9}, and C={z€Z:5<z<11}.
List the elements of:
a B b c A d AnB
e (AnB) f AnC g B'uC h (AuC)nB
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6 Consider the set of real numbers R. Write down the complement of:
a (—oo,0) b [1, c0) c [-3,2) d (=5,7
e (—oo, 1)UJ3, ) f [-5,0)U(1, o)

"= | PROPERTIES OF UNION AND INTERSECTION

In this section we will explore the number of elements in unions and intersections of sets.

Example 5 %) Self Tutor

Suppose € = {positive integers}, P = {multiples of 4 less than 50}, and
@ = {multiples of 6 less than 50}.

a List P and Q. b Find PNQ. ¢ Find PUQ.
d Verify that n(PUQ) = n(P) +n(Q) —n(PNQ).

a P={4,8,12, 16, 20, 24, 28, 32, 36, 40, 44, 48}
Q = {6, 12, 18, 24, 30, 36, 42, 48}
b PNQ = {12, 24, 36, 48}
PUQ = {4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48}
d n(PUQ)=16 and n(P)+n(Q)—n(PNQ)=12+8-4=16
So, n(PUQ)=n(P)+n(Q)—n(PNQ) is verified.

EXERCISE 1E

1 Suppose € =Z", P = {prime numbers < 25}, and Q = {2, 4, 5, 11, 12, 15}
a List P. b Find PNQ. ¢ Find PUQ.
d Verify that n(PUQ) =n(P)+n(Q) —n(PNQ).

2 Suppose ¢ =Z", P = {factors of 28}, and @ = {factors of 40}.
a List P and Q. b Find PNQ. ¢ Find PUQ.
d Verify that n(PUQ) =n(P)+n(Q) —n(PNQ).

3 Suppose €=7Z", M = {multiples of 4 between 30 and 60}, and

N = {multiples of 6 between 30 and 60}.

a List M and N. b Find MNN. ¢ Find MUN.
d Verify that n(M UN) =n(M)+n(N)—-n(MNN).

4 Suppose €=7Z, R={z€Z:-2<x<4}, and S={z€Z:0<z< T}
a List Rand S. b Find RNS. ¢ Find RUS.
d Verify that n(RUS)=n(R)+n(S) —n(RNS).

5 Suppose €=7Z, C={yecZ:-4<y< -1}, and D={yecZ:-7<y<0}.
a List C and D. b Find CND. ¢ Find CUD.
d Verify that n(C'UD) =n(C)+n(D)—n(CND).
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6 Suppose € =Z*1, P = {factors of 12}, @ = {factors of 18}, and R = {factors of 27}.
a List the sets P, @, and R.

b Find: i PnQ ii PNR iii QNR
iv PUu@ v PUR vi QUR
¢ Find: i PNQNR ii PUQUR

7 Suppose € =7Z", A= {multiples of 4 less than 40}, B = {multiples of 6 less than 40}, and
C' = {multiples of 12 less than 40}.
a List the sets A, B, and C.
b Find: i ANB ii BnC iii AnC
iv AnBNnC v AUBUC
¢ Verify that
n(AUBUC) =n(A) +n(B) +n(C) —n(ANB) —n(BNC)—n(ANC)+n(ANBNC).

8 Suppose € =771, A= {multiples of 6 less than 31},
B = {factors of 30}, and C = {primes < 30}.
a List the sets A, B, and C.
b Find: i ANB ii BnC iii AnC
iv ANBNC v AUBUC
¢ Verify that
n(AUBUC) =n(A) +n(B)+n(C)—n(ANB) —n(BNC)—n(ANC)+n(ANBNC).

" [VENN DIAGRAMS

A Venn diagram consists of a universal set € represented by a rectangle.
Sets within the universal set are usually represented by circles.

For example:

e This Venn diagram shows set A within the e Thesets €=1{2 3,578},
universal set €. A’, the complement of A, A={2,7,8}, and A ={3,5}
is the shaded region outside the circle. are represented by:

A 4 5
3
% A’ % Al
SUBSETS

If B C A then every element of B is also in A.

The circle representing B is placed within the circle
representing A.




22 Sets and Venn diagrams (Chapter 1)

INTERSECTION

AN B consists of all elements common to both A and B.

It is the shaded region where the circles representing A and B
overlap.

UNION

A U B consists of all elements in A or B or both.

It is the shaded region which includes both circles.

AUB

DISJOINT OR MUTUALLY EXCLUSIVE SETS

Disjoint sets do not have common elements.
They are represented by non-overlapping circles.

For example, if A= {2,3,8} and B ={4,5, 9}
then ANB = 2. € A B
ANB=go

Example 6 ) Self Tutor

Suppose € = {1, 2, 3, 4, 5, 6, 7, 8}. Tllustrate on a Venn diagram the sets:
a A=1{1,3,6,8) and B={2 3 4,5, 8
b A=1{1,3,6,7,8 and B = {3, 6, 8}
¢ A=1{2,4,8} and B = {3, 6, 7}.

a ANnB={3,8} b ANB={3, 6,8}, c ANB=9o

BCA

- A B
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EXERCISE 1F.1

1 Represent sets A and B on a Venn diagram, given:
€=1{1,2,3,4,506,7}, A={2,4,5,6}, and B={1,4,6,7}
b €=1{2,3,4,56,7}, A=1{2,4,6}, and B = {5, 7}

c €=1{2,3,4,56,7}), A={2,4,6}, and B ={3,5, 7}

d €=1{3,4,5 7}, A=1{3,4,57}, and B = {3, 5}

2 Suppose € ={rc€Z:1<x<10}, A= {odd numbers < 10}, and B = {primes < 10}.
a List sets A and B. b Find ANB and AUB.
¢ Represent the sets A and B on a Venn diagram.

3 Suppose €={r€Z:1<x<9}, A= {factors of 6}, and B = {factors of 9}.
a Listsets A and B. b Find ANB and AUB.
¢ Represent the sets A and B on a Venn diagram.

4 Suppose ¢ = {even numbers between 0 and 30},
P = {multiples of 4 less than 30}, and
@ = {multiples of 6 less than 30}.
a List sets P and Q. b Find PNQ and PUQ.

¢ Represent the sets P and @) on a Venn diagram.
5 Suppose € = {x €Z" :x <30}, R= {primes less than 30}, and
S = {composites less than 30}.

a Listsets R and S. b Find RNS and RUS.
¢ Represent the sets R and S on a Venn diagram.

6 0 5 List the elements of set:
a A b B c A
g d B e ANB f AUB
g (AuB) h AUB
a c k
¢
7 This Venn diagram consists of three overlapping circles
A B A, B, and C.
A a List the letters in set:

v i A ii B
AQ iii C iv ANB
v AUB vi BNnC
C vii ANBNC viii AUBUC

b Find: i n(AUBUCQC)
ii n(A)+n(B)+n(C)—n(ANB)—n(ANC)—n(BNC)+n(ANBNC)
¢ What do you notice about your answers in b?

¢
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USING VENN DIAGRAMS TO ILLUSTRATE REGIONS

We can use shading to show various sets on a Venn diagram.
For example, for two intersecting sets A and B:

<€ € € <€
A is shaded AN B is shaded B’ is shaded AN B’ is shaded
Example 7 %) Self Tutor
Shade the following regions for two intersecting sets A and B:
a AUB b ANB ¢ (AnB)
a b c
A@ A B A )
¢ ¢ ¢
(in A, B, or both) (outside A, intersected with B) (outside AN B)

EXERCISE 1F2

1 On separate Venn diagrams, shade regions for:
A B a ANB b ANB
c AUB d AUB
e ANB fANE PRINTABLE
VENN DIAGRAMS
K (OVERLAPPING)
2 On separate Venn diagrams, shade regions for: :; ;A
A B a AUB b (AUBY K
c (AnB) d AuB
e (AuBY f (AuBY
K3
3 Suppose A and B are two disjoint sets. Shade on separate Venn
A B diagrams: PRINTABLE
a A b B VENN ;gm&TAMs
DI
c A d B ( )
. e ANB f AUB e

g ANB h AUB \ & §
i (ANBY
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4 Suppose B C A, as shown in the given Venn diagram. Shade on
A separate Venn diagrams:
PRINTABLE
a A b B VENN DIAGRAMS
c A d B (SUBSET)
e ANB f AUB e
é <J
g€ ANB h AUB - E
i (ANnB)
5 This Venn diagram consists of three intersecting sets. Shade on
A B separate Venn diagrams:
! PRINTABLE
a A b B VENN DIAGRAMS
¢c BnC d AuB (3 SETS)
e AnBnNC f AuUBUC
/ o
4 g (AnBNnQO) h (BNnC)UA -l
2 i (AuB)NC j (AnC)u(BNC) §
k (AnB)UuC I (AuC)Nn(BUCQ)
Click on the icon to practise shading regions representing various subsets. You can VENN DIAGRAMS
practise with both two and three intersecting sets.
o -8
Discovery The algebra of sets
For the set of real numbers R, we can write laws for the operations + and x:
For any real numbers a, b, and c:
e commutative a+b=b+a and ab=ba
o identity Identity elements 0 and 1 exist such that
6+0=0+a=a and axl=1xa=a.
e associativity (a+b)+c=a+(b+c) and (ab)c= a(bc)
e distributive  a(b+c¢) =ab+ac
The following are the laws for the algebra of sets under the operations U and N:
For any subsets A, B, and C of the universal set €:
e commutative ANB=BNA and AUB=BUA
e associativity AN(BNC)=(ANB)N C and We have already used
AU(BUC)=(AUB)U Venn diagrams to verify
o distributive AU (BNC)=(AUB)N (A UC) and the distributive laws.
AN(BUC)=(ANB)U(ANCQC)
o identity AUg=A and ANE=A

e complement AUA'=¢ and ANA =

e domination AUg€=¢ and ANQ =9

e idempotent ANA=A and AUA=A

e DeMorgans (ANB)=AUB" and (AUB)=A'NB
e involution (A)Yy =A
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What to do:

1 With the aid of Venn diagrams, explain why the following laws are valid:
a the complement law (A') = A
the commutativelaws ANB=BNA and AUB=BUA
the idempotent laws ANA=A and AUA=A

b

(4

d the associative laws AN (BNC)=(ANB)NC and AU(BUC)=(AUB)UC

e the distributive laws AU(BNC) = (AUB)N(AUC) and AN(BUC) = (ANB)U(ANC).

2 Use the laws for the algebra of sets to show that:

a Au(BUA)=¢ b AN(BNA)=9
¢ AUBNA)=AUB d (AUB)=ANB
e (AUB)N(A'NB)=o

f (AUB)N(CUD)=(ANC)U(AND)U(BNC)U (BND).

-/ INUMBERS IN REGIONS

We have seen that there are four regions on a Venn
diagram which contains two overlapping sets A and B. A

Syl

A'N B

¢

There are many situations where we are only interested in the number of elements of ¢ that are in each
region. We do not need to show all the elements on the diagram, so instead we write the number of elements
in each region in brackets.

Example 8 w) Self Tutor
In the Venn diagram given, (3) means that there are 3 elements in
p Q the set PN Q.
@ How many elements are there in:
A a P b Q c PUQ
4 @ d P, but not Q e @, butnotP f neither P nor Q?
n(P)=7+3=10 b n(Q)=7+4=11
n(PUQ)=7+3+11=21 d n(P,butnot Q) =7

n(Q, but not P) =11 f n(neither P nor Q) = 4
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Venn diagrams allow us to easily visualise identities such as
A B
N — —
n(ANB') =n(A) —n(ANB) A B
n(A"'N B) =n(B) —n(AN B)
¢
Example 9 ) Self Tutor
Given n(€) =30, n(A) =14, n(B) =17, and n(ANB) =6, find:
a n(AUB) b n(A, but not B)
We see that b =6 {as n(ANB) =06}
A B a+b=14 {as n(A4) =14}
b+c=17 {as n(B) =17}
a+b+c+d=30 {as n(¢) =30}
. b=6, a=8, and c=11
d . s s
. (@

a n(AUB)=a+b+c=25

EXERCISE 1G

1

. )
2

2 (d)
|

¢ (a—5)

8+6+11+d=230
d=5

b n(A, butnot B) =a =38

In the Venn diagram given, (2) means that there are 2 elements
in the set AN B.
How many elements are there in:

a B b A
c AUB d A, but not B
e B,butnot A f neither A nor B?

In the Venn diagram given, (a) means that there are a elements
in the shaded region.

Notice that n(A4) =a+b. Find:

a n(B) b n(4)
¢ n(ANB) d n(AUB)
e n((AnB)) f n((AuB))

The Venn diagram shows that n(P N Q) =a and n(P) = 3a.
a Find:

i n(Q) 1 n(PUQ) iii n(@Q) 1iv n(¥)
b Find a if:
i n(g) =29 ii n(g) =31

Comment on your results.
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A B

0

€

Use the Venn diagram to show that:
n(AUB) =n(A)+n(B) —n(ANB)

5 Given n(¢) =26, n(4) =11, n(B) =12, and n(ANB) =238, find:

a n(AUB)

b n(B, but not A)

6 Given n(¢) =32, n(M)=13, n(MNN)=5, and n(MUN) =26, find:

a n(N)

b n((MUNY)

7 Given n(g) =50, n(S) =30, n(R) =25, and n(RUS) =48, find:

a n(RNS)

the number of elements in each region.

Example 10

b n(S, but not R)

.| |PROBLEM SOLVING WITH VENN DIAGRAMS

In this section we use Venn diagrams to illustrate real world situations. We can solve problems by considering

w) Self Tutor

A squash club has 27 members. 19 have black hair, 14 have brown
eyes, and 11 have both black hair and brown eyes.

a Place this information on a Venn diagram.
b Hence find the number of members with:

i black hair or brown eyes
ii black hair, but not brown eyes.

a Let Bl represent the black hair set and Br represent the brown eyes set.

Bl @ Br

. (a)
b

Bl @ Br

" (5)

a+b+c+d=27

{total members}

a+b=19 {black hair}
b+c=14 {brown eyes}
b=11 {black hair and brown eyes}

a=38, ¢c=3, d=5

i n(BlUBr)=8+11+3=22
22 members have black hair or brown eyes.
ii n(BINnBr')=38

8 members have black hair, but not brown eyes.

(Chapter 1)
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Example 11 ) Self Tutor

A platform diving squad of 25 has 18 members who dive from 10 m and 17 who dive from 5 m.
How many dive from both platforms?

Let T represent those who dive from 10 m and F' represent those who dive from 5 m.

d=0 {as all divers in the squad must dive
7 F from at least one of the platforms}
@ a+b=18
b+c=17 oa=8,b=10, ¢c=7
< (d) a+b+c=25
n(both T and F) = n(T' N F)
T F =10
@ 10 members dive from both platforms.
« (0)

EXERCISE TH

1 Pelé has 14 cavies as pets. Five have long hair and 8 are
brown. Two are both brown and have long hair.

a Place this information on a Venn diagram.
b Hence find the number of cavies that:
i do not have long hair
ii have long hair and are not brown
ifi are neither long-haired nor brown.

During a 2 week period, Murielle took her umbrella with her on
8 days. It rained on 9 days, and Murielle took her umbrella on
five of the days when it rained.

a Display this information on a Venn diagram.
b Hence find the number of days that:

i Murielle did not take her umbrella and it rained
ii Murielle did not take her umbrella and it did not rain.

3 A badminton club has 31 playing members. 28 play singles and 16 play doubles. How many play both
singles and doubles?

4 In a factory, 56 people work on the assembly line. 47 work day shifts and 29 work night shifts.
How many work both day shifts and night shifts?
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Example 12 ) Self Tutor

Consider the Opening Problem on page 12:
A city has three football teams in the national league: A, B, and C.

In the last season, 20% of the city’s population saw team A play, 24% saw team B, and 28% saw
team C. Of these, 4% saw both A and B, 5% saw both A and C, and 6% saw both B and C. 1%
saw all three teams play.
Using a Venn diagram, find the percentage of the city’s population which:

a saw only team A play b saw team A or team B play but not team C

¢ did not see any of the teams play.

We construct the Venn diagram in terms of percentages.

Using the given information,

A B
a=1 {1% saw all three teams play}

a+d=4 {4% saw A and B}

N@ a+b=6 {6% saw B and C}

a+c=5 {5% saw A and C}
d=3, b=5, and ¢=4

2 C
A B In total, 20% saw team A play,
so g+14+4+3=20 .. g=12
@ 24% saw team B play,
@@ 0 e+l+5+3=24 - e=15
(h) 28% saw team C' play,
so f+1+5+4=28 .. [f=18
e C
In total we cover 100% of the population, so h = 42.
A B a n(saw A only) =12% {shaded}

b n(A or B, but not C')

WQ — 12% + 3% + 15%

= 30%

(42) ¢ n(saw none of the teams) = 42%

5 In a year group of 63 students, 22 study Biology, 26 study Chemistry, and 25 study Physics.
18 study both Physics and Chemistry, 4 study both Biology and Chemistry, and 3 study both Physics
and Biology. 1 studies all three subjects.
a Display this information on a Venn diagram.
b How many students study:
i Biology only il Physics or Chemistry
ifi none of Biology, Physics, or Chemistry iv Physics but not Chemistry?
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6 36 students participated in the mid-year adventure trip.

19 students went paragliding, 21 went abseiling, and 16
went white water rafting. 7 went abseiling and rafting,
8 went paragliding and rafting, and 11 went paragliding

and abseiling. 5 students did all three activities.

Find the number of students who:
a went paragliding or abseiling
only went white water rafting

b
¢ did not participate in any of the activities mentioned
d did exactly two of the activities mentioned.

There are 32 students in the woodwind section of the
school orchestra. 11 students can play the flute, 15 can
play the clarinet, and 12 can play the saxophone. 2
can play the flute and the saxophone, 2 can play the
flute and the clarinet, and 6 can play the clarinet and
the saxophone. 1 student can play all three instruments.
Find the number of students who can play:

a none of the instruments mentioned

b only the saxophone

¢ the saxophone and the clarinet, but not the flute
d only one of the clarinet, saxophone, or flute.

8 In a particular region, most farms have livestock and crops. A survey of 21 farms showed that 15 grow
crops, 9 have cattle, and 11 have sheep. 4 have sheep and cattle, 7 have cattle and crops, and 8 have
sheep and crops. 3 have cattle, sheep, and crops. Find the number of farms with:

a only crops b only animals

Review set 1A

¢ exactly one type of animal, and crops.

1 Suppose S={z€Z:2<x<T}
a List the elements of S.

¢ How many proper subsets does S have?

b Find n(S).

2 Determine whether A C B for the following sets:

{reR:0<z <4}

a A=1{2,46,8 and B={z€Z:0<z<10}
b A=2 and B={zec(2 3)}

c A={zeQ:2<2<4} and B=

d A={z€(—,3)} and B={z¢€

3 Find the complement of X given that:

(=00, 4]}

€ = {the 7 colours of the rainbow} and X = {red, indigo, violet}

a

b ¢={zxcZ:-5<z<5} and X ={—4, 1,3, 4}
c ¢={z€Q} and X ={ze€Q:z< -8}

d ¢={z€R} and X ={zxe[-3,1)U(4 00)}
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10

11

Write using interval notation, and state whether the interval is closed, open, or neither:

a o o b - o

3 2 -1 0 1 2 3 =

-3 2 -1 0 1 2 3 =

[llustrate in the Cartesian plane:

a {(z,y):y=—2z} b {(z,y):z <y}
On separate Venn diagrams like the one alongside, shade:
a N’ b MNN c MnN’ M
¢

Let ¢ = {the letters in the English alphabet}, A = {the letters in “springbok”}, and
B = {the letters in “waterbuck”}.
a Find:
i AUB ii ANB iii AnB
b Write a description for each of the sets in a.
¢ Show ¢, A, and B on a Venn diagram.

Let €= {ze€Z":2 <30}, P= {factors of 24}, and @ = {factors of 30}.
a List the elements of:
i P ii Q iii PNQ iv PUu@
b [Illustrate the sets P and @ on a Venn diagram.

A school has 564 students. During Term 1, 229 of them were absent for at least one day due to
sickness, and 111 students missed some school because of family holidays. 296 students attended
every day of Term 1.
a Display this information on a Venn diagram.
b Find the number of students who were away:
i for both sickness and holidays ii for holidays but not sickness
ifi during Term 1 for any reason.

The main courses at a restaurant all contain rice or onion. Of the 23 choices, 17 contain onion and
14 contain rice. How many dishes contain both rice and onion?

38 students were asked what life skills they had. 15 could
swim, 12 could drive, and 23 could cook. 9 could cook and
swim, 5 could swim and drive, and 6 could drive and cook.
There was 1 student who could do all three. Find the number
of students who:

a could only cook

b could not do any of these things

¢ had exactly two life skills.



Sets and Venn diagrams (Chapter 1) 33

12 Consider the sets € = {z € Z* : £ <10}, P = {odd numbers less than 10}, and
@ = {even numbers less than 11}.

a List the sets P and Q. b What can be said about sets P and Q?
c Illustrate sets P and ) on a Venn diagram.

Review set 1B

1 True or false?
a NcQ b 0cZ* c 0€Q
d RCQ e ZtNZ = {0}

2 a Write using interval notation:

the real numbers between 5 and 12

ii the integers between —4 and 7, including —4
ifi the natural numbers greater than 45.

b Which sets in a are finite and which are infinite?

3 List the subsets of {1, 3, 5}.

4 Let €¢={x€Z:0<x<10}, A = {the even integers between 0 and 9}, and
B = {the factors of 8}.

a List the elements of:
i A ii ANB iii (AuB)
b Represent this information on a Venn diagram.

5 S and T are disjoint sets. n(S) =s and n(7T) =+¢. Find:
a SNT b n(SUT)

6 For each of the following sets, determine whether the interval described is closed, open, or neither:
a ze (-4 3] b ze[-2 2 c zeR

7 Suppose A and B are each sets of points which define straight lines.
a Describe in words the meaning of:
i ANB ii AUB
b Is AN B necessarily finite? Explain your answer.
¢ If AN B is finite, what possible values can n(A N B) have?

8 Give an expression for the region shaded in:
A B a blue b red.
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10

11

12

In a car club, 13 members drive a manual and 15
members have a sunroof on their car. 5 have manual
cars with a sunroof, and 4 have neither.
a Display this information on a Venn diagram.
b How many members:
i are in the club
ii drive a manual car without a sunroof
iii do not drive a manual car?

All attendees of a camp left something at home. 11 forgot to bring their towel, and 23 forgot their
hat. Of the 30 campers, how many had neither a hat nor a towel?
Consider the sets € = {z € ZT : <40}, A = {factors of 40}, and B = {factors of 20}.
a List the sets A and B. b What can be said about sets A and B?
¢ [Illustrate sets A and B on a Venn diagram.
At a conference, the 58 delegates speak many
different languages. 28 speak Arabic, 27 speak
Chinese, and 39 speak English. 12 speak Arabic
and Chinese, 16 speak both Chinese and English,

and 17 speak Arabic and English. 2 speak all three
languages. How many delegates speak:

a Chinese only
b none of these languages

¢ neither Arabic nor Chinese?
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'RELATIONS AND FUNCTIONS

The charges for parking a car in a short-term car park at an airport are shown in the table below. The total
charge is dependent on the length of time ¢ the car is parked.

Car park charges i -%;‘%ﬁ%

Time t (hours) | Charge
0 - 1 hours 5.00 G it
1 - 2 hours 29_00 = G Y ity s
2 -3 hours | $11.00
3 -6 hours | $13.00
6 - 9 hours | $18.00
9 - 12 hours | $22.00

12 - 24 hours | $28.00

Looking at this table we might ask: How much would be charged for exactly one hour? Would it be $5 or
$9?

To avoid confusion, we could adjust the table or draw a graph. We indicate that 2 - 3 hours really means
a time over 2 hours up to and including 3 hours, by writing 2 < ¢ < 3 hours.

Car park charges 30 chargs ()

Time t (hours) Charge T

0 <t <1 hours $5.00 % o—

1 <t < 2 hours $9.00 —* o exclusion

2 <t < 3 hours $11.00 o—o e inclusion

3<t<6hours | $13.00 10| oo

6 <t <9 hours $18.00 e time (hours)

9 <t <12 hours | $22.00 “ 3 5 5 B s ol
12 < t < 24 hours | $28.00 !

In mathematical terms, we have a relationship between two variables time and charge, so the schedule of
charges is an example of a relation.

A relation may consist of a finite number of ordered pairs, such as  {(1, 5), (=2, 3), (4, 3), (1, 6)}, or
an infinite number of ordered pairs.

The parking charges example is clearly the latter, as every real value of time in the interval 0 < ¢ < 24
hours is represented.

The set of possible values of the variable on the horizontal axis is called the domain of the relation.
For example: o the domain for the car park relationis {¢ |0 <t < 24}
e the domain of {(1, 5), (=2, 3), (4, 3), (1,6)} is {-2, 1, 4}.
The set of possible values on the vertical axis is called the range of the relation.
For example: e the range of the car park relation is {5, 9, 11, 13, 18, 22, 28}
e the range of {(1,5), (-2, 3), (4, 3), (1,6)} is {3, 5, 6}.

We will now look at relations and functions more formally.
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RELATIONS
In Chapter 1, we saw that:

A relation is any set of points which connect two variables.

A relation is often expressed in the form of an equation connecting the variables = and y. The relation is
a set of points (z, y) which can be viewed in the Cartesian plane.

For example, y=2+3 and z =y

of ordered pairs, which we can graph.

are the equations of two relations. Each equation generates a set

y=x+3 isaset Ay x =1y? isasetof by
of points which lie points which lie in
in a straight line a smooth curve. x=1>
Szl 3 3 2 /
0 G
e -3 \
'

A

- o
]y

|
. [N&)

FUNCTIONS

A function, sometimes called a mapping, is a relation in which no two
different ordered pairs have the same z-coordinate or first component.

We can see from the above definition that a function is a special type of relation.
Every function is a relation, but not every relation is a function.

TESTING FOR FUNCTIONS
Algebraic Test:

If a relation is given as an equation, and the substitution of any value for x
results in one and only one value of y, then the relation is a function.

For example:
e y=23z—1 isa function, since for any value of = there is only one corresponding value of y
e x =12 isnota function, since if x =4 then y = +2.

Geometric Test or Vertical Line Test:

Suppose we draw all possible vertical lines on the graph of a relation.
e If each line cuts the graph at most once, then the relation is a function.
e If at least one line cuts the graph more than once, then the relation is not a function.

GRAPHICAL NOTE

e If a graph contains a small open circle such as —o—— | this point is not included.
e If a graph contains a small filled-in circle such as ———s , this point is included.

e If a graph contains an arrow head at an end such as ——— , then the graph continues indefinitely in
that general direction, or the shape may repeat as it has done previously.
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Example 1 ) Self Tutor

Which of the following relations are functions?

/I/ o T = (0) %7;
= Ol @ l\‘
a y b y c y DEMO
. €8
0 G - ol\’\ "z \ K
R
a function a function not a function
EXERCISE 2A.1
1 Which of the following sets of ordered pairs are functions? Give reasons for your answers.
a {(19 3): (2n 4)7 (39 5)’ (47 6)} b {(19 3)9 (37 2)’ (L 7)’ (_19 4)}
c {(2,-1),(2,0),(23), (2 1)} d {(7,6), (5, 6), (3, 6), (=4, 6)}
e {(0,0),(1,0), (3,0), (5 0)} f {(0,0), (0, =2), (0, 2), (0, 4)}

2 Use the vertical line test to determine which of the following relations are functions:

N AL
T T
A

l

i
e

3 Give algebraic evidence to show that the relation 2 +y? = 16 is not a function.

9
<Y

A

%

o
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ONE-ONE FUNCTIONS

A one-one function is a function in which no two different ordered pairs
have the same y-coordinate or second component.

For example:

° hy ° Ay One-one is read
as “one to one”.
y=3z+1
L 2
- o) > y=z
- 0O C=C
A J \
The function y = 3z 4+ 1 is The function y = 22 is not
one-one, since each distinct point one-one, since the graph contains
on the graph has a different distinct points (—3, 9) and (3, 9)
y-coordinate. which have the same y-coordinate.

We can use the horizontal line test to determine whether a function is one-one:

Suppose we draw all possible horizontal lines on the graph of a function.
e If each line cuts the graph at most once, then the function is one-one.
e If at least one line cuts the graph more than once, then the function is not one-one.

Example 2 ) Self Tutor
Which of the following relations are one-one?
a Y b AY c A
(@)

o

]y

K]y

A
d

o
/
sy

/
/ Ky
Aﬁ

A Y
T
'
A Y
%i
A\ v ' ¥

one-one one-one not one-one
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EXERCISE 2A.2
1 Which of the following functions are one-one?

a y / b y ¢ v

N 0 % N 0 % N 0 %
Y

d Y e AY f Y

= 0 % - 0 % 2 0 T
\j

2 Determine whether the following relations are functions. If they are functions, determine whether they
are one-one.

a Y b AY C Y

A

\j

3 Consider the car park relation described on page 36.

a i Richard parked his car for 4 hours. How much did he pay?

ii Suppose Susie parked her car for ¢ hours. If you know the value of ¢, can you uniquely
determine how much she paid?

ifi Is the car park relation a function?

b i Janette paid $18 for parking. Can you uniquely determine how long she parked for?
i Is the car park function one-one?

1| [FUNCTION NOTATION

Function machines are sometimes used to illustrate how functions behave.

If 4 is the input fed into the machine,
I double the the output is  2(4) + 3 = 11.

input and

then add 3 , ‘

output
2+ 3

The above ‘machine’ has been programmed to perform a particular function. If we use f to represent that
particular function, we can write:

f is the function that will convert x into 2x + 3.
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So, f would convert 2 into 2(2)+3=7 and
—4 into  2(—4)+3 = -5.
This function can be written as:
f:x—2x+3

/d —_—— f(zx) is read as

. . . “fof z”.
function f such that x is converted into 2x + 3 Jofw

Two other equivalent forms we use are  f(z) =2x+3 and y =2z +3.

f(z) is the value of y for a given value of z, so y = f(z).

f is the function which converts z into f(z), so we write by
fraze f(z). @7
y = f(z) is sometimes called the function value or image of x.

For f(x)=2z+3:

flz)=2z+3
o f(2)=2(2)+3=T. < >
the point (2, 7) lies on the graph of the function. O :
o f(—4)=2(—4)+3=—5.
the point (—4, —5) also lies on the graph. (=4.-5)

A linear function is a function of the form f(xz) = az +b where a, b are real constants.
The graph of a linear function is a straight line.

Example 3 u) Self Tutor

If f:z+w 2223z, findthevalueof: a f(5) b f(-4)

f(x) =22% — 3x
a f(5)=2(5)?%-3(5 {replacing = with (5)}
=2x25—-15
=35
b f(—4)=2(-4)> —3(—4) {replacing z with (—4)}
= 2(16) + 12
=44
EXERCISE 2B
1 If f(z)=3z—2?+2, find the value of:
a f(0) b f(3) c f(=3) d f(=7) e f(3)

4
2 If grroT——, find the value of:

a g(1) b g(4) c g(-1) d g(—4) e g(—3)
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3 The graph of y = f(x) is shown alongside. Ay

a Fitld: ) y=f(z)

i f(2) i f(3)
b Find the value of x such that f(x) =4. 2 /_\

- —2 O 2 %
—92
Y
Example 4 %) Self Tutor

If f(z)=5—z—22 find in simplest form: a f(—x) b f(z+2)

a f(—x)=5—(—x)—(—x)? {replacing x with (—z)}
=5+x—2?
b f(z+2)=5—(x+2)— (z+2) {replacing x with (z +2)}

=5—x—2—[2? +4z +4]
=3—x—a2?—4dx—4
=22 -5r—1

4 If f(x)=7-3x, find in simplest form:

a f(a) b f(—a) c f(a+3) d f(b-1) e f(z+2) f f(z+h)
5 If F(z)=22?+3z—1, find in simplest form:
a Flx+4) b F(2-1) c F(—x) d F(z?) e F(z2—1) f F(z+h)
2z +3

6 Suppose G(z) T
-

Evaluate: i G(2) ii G(0) i G(—3)
Find a value of x such that G(x) does not exist.
Find G(x +2) in simplest form.

Find z if G(z) = -3.

2 60 T 9

7 f represents a function. What is the difference in meaning between f and f(xz)?
8 The value of a photocopier ¢ years after purchase is given by
V(t) = 9650 — 860t dollars.
a Find V(4) and state what V(4) means.
b Find ¢t when V() = 5780 and explain what this represents.

¢ Find the original purchase price of the photocopier.

9 On the same set of axes draw the graphs of three different functions
f(z) such that f(2)=1 and f(5)=3.

10 Find a linear function f(z) =ax +b for which f(2)=1 and f(-3)=11.
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11 Given f(z)=ax+ 2, f(1)=1, and f(2)=>5, find constants a and b.
T

12 Given T(z)=az?+bx+c, T(0)= -4, T(1)=-2, and T(2) =6, find a, b, and c.

'DOMAIN AND RANGE

.. . . Th i ti
The domain of a relation is the set of values of x in the relation. P A
called the image set.
The range of a relation is the set of values of y in the relation. \\

The domain and range of a relation are often described using interval notation.

Yy

2

For example:

(1) AY All values of xz > —1 are included,
so the domain is {z:x > —1}.

All values of y > —3 are included,
so the range is {y :y > —3}.

Y

(2) Y x can take any value,
so the domain is {z :x € R}.
(2,1) y cannot be > 1,

< 0 so the range is {y:y < 1}

33 4

(3) Ay : x can take all values except 2,
: so the domain is {x : x # 2}.
i y can take all values except 1,
"""" e so the range is {y:y # 1}.

DOMAIN AND RANGE OF FUNCTIONS

To fully describe a function, we need both a rule and a domain.

2

For example, we can specify f(x) =x* where z > 0.

If a domain is not specified, we use the natural domain, which is the largest part of R for which f(z) is
defined.
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For example, consider the domains in the table opposite: f(z) | Natural domain
. . . . z? zeR
Click on the icon to obtain software for finding the >0
domain and range of different functions. va =
DOMAIN AND L 40
RANGE z
1
gz :i ﬁ x>0
Example 5 ) Self Tutor
For each of the following graphs, state the domain and range:
a b
Ay Y

(8,-2) 2.71)
Y
a Domainis {z:z <8} b Domainis {z:z € R}
Rangeis {y:y=> -2} Rangeis {y:y=> -1}

EXERCISE 2C

1 For each of the following graphs, state the domain and range:

a Yy Yy
(_1’ 3)

(5} 4
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Example 6 ) Self Tutor
State the domain and range of each of the following functions:
1 1
a f(r)=+vz-5 b Jc(fﬂ)—m__5 ¢ fl@)= —
a vx—5 isdefinedwhen z—520 Yy
x =25 y=+vz—5
the domain is {z : = > 5}.
A square root cannot be negative.
the range is  {y :y > 0}. = Ol 5 T
b 15 is defined when = —5#0 Y
= —
x#5
the domain is {x : = # 5}. 0

No matter how large or small x is, y = f(z) is i5 T
never zero.
o, therangeis {y:y #0}.

c \/;TS) is defined when z—5>0 y
ST >5H
the domain is {z : = > 5}.

y = f(z) is always positive and never zero. 0
the range is {y:y > 0}.

2 State the values of = for which f(x) is defined, and hence state the domain of the function.

1 -7
3 Find the domain and range of each of the following functions:
a frz—2x-1 b f(z)=3 c [z /T
1 1 1
d @)= e f@=-— £ fram
4 Use technology to help sketch graphs of the following functions. Find the domain and range of each.
_ . 1 . DOMAIN AND
a f(x)=vx—2 b f.mHP c f:x—+d—=x RANGE
d y=2%—-T7z+10 e f(z)=va2+4 f flx)=vVa22—-4 S
(e
g f:x— br— 322 h f::::+—>m+l i y:w+4 §
T T —2
3z —9

j y=23-322-92+10 k f:x— I y=2%4+272

2 —x—2
1

3

m y=2z+ n f:z—aot+42% - 160+ 3
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(1| [THE MODULUS FUNCTION

The modulus or absolute value of a real number is its size, ignoring [The absolute value of a]

.. . .
its sign. number is always > 0.

We denote the absolute value of x by |z|.

For example, the modulus of 4 is 4, and the modulus of —9 is 9. We
write |4 =4 and |-9|=09.

Example 7 ) Self Tutor
If x = -3, find the value of:
a |z b x|z c |x2+x} d 73:2—1’
a || b x|z c |2? + z| d m;l‘
=[-3| = (=3)[-3 = [(=3)* + (-3)| B }7(—3) — 1‘
- 9 —6 =|-11
=11
EXERCISE 2D.1
1 Find the value of:
a |5 b |-5| c |7-3| d [3-7]
2_ _ 3oL 2
e [22-10| f |15 3 x5| g | h ‘(_3)3’
2 If x =4, find the value of:
a |z—5| b |10 - z| ¢ |3z —2?| d 2“1‘
r—1
3 If x = —2, find the value of:
a |z b x|z c —|x—ac2| a Lt
T +1
MODULUS EQUATION S Solving modulus equations
The equation |z| =2 has two solutions: =2 and z = —2 is not needed for the syllabus.

If |z| =a where a >0, then = = =+a.

S
If |z| =|b| then z = =£b. i

&

=4

We use these rules to solve equations involving the modulus function.
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Example 8 ) Self Tutor
Solve for x: a 2z+3|="7 b [3—2z|=-1
a |2c+3/=7 b |3—2z]=-1
20 +3 = &7 has no solution as LHS
2r+3=17 or 20 +3=-7 is never negative.
2 =4 co 20 =-10
r =2 S r=-5

So, x=2o0r —5

Example 9 ) Self Tutor

Solve for x: |z + 1| = |2z — 3]

If |x+1]=2z—3|, then z+1==+(2z—3)

r+1=2x-3 or r+1=—(2z-3)
L d=x oo+ 1=-2x4+3
3r =2
o= 2

3

So, x=2or4.

EXERCISE 2D.2
1 Solve for z:
a |z|=3 b |z|]=-5 c |z|=0
d z—1]=3 e |3—z|=4 f jz+5/=-1
g [3z-2/=1 h [3—2z/=3 i [2— 5z =12
2 Solve for z:
a [3z—1|=|z+2| b [2z+5|=1— x| c [z+1=2—z
d |z|=|5—2z e |1—dz|=|z—1] f Bx+2/=2—2z
THE GRAPH OF y = |f(x)| Ly
Consider the function f(z) = —x — 1. 4
3
In the table below, we calculate the values of f(x) and 5
f(z)| for =-3,~2,-1,0,1,2, 3. y=|f ()]
O .
z |-3]-—=2[-1]o[1]2]3 ST
f@ 2] 1o |-1]-2]|-3]|-4 Ty
f@) | 2| 1]ol1]2]3]4 2N y=r@)
-3 ‘e
Using these values, we can plot y = f(x) and y = |f(z)] —4 \‘,‘
on the same set of axes. Y
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To draw the graph of y = |f(z)|, any parts of y = f(z) that are below the z-axis
are reflected in the z-axis.

Example 10 %) Self Tutor
For the following graphs, sketch the graph of y = |f(z)]:
a ‘y / 2 b Y
-t O i -t O i
v y=f(z)
a Y b L Y
/—V
y=|f(z)| y=|f(z)|
= o T = ) T
yfwf},xJ s
» Y
EXERCISE 2D.3
PRINTABLE
1 For the following graphs, sketch the graph of y = |f(z)|: DIAGRAMS
|
a LY b AY ¢ Ay A0
=
\ \ / ‘ E
= 0 \5: - 0 T T 0 z
y=1() h/%” (®) %@:)
A\ \J A\
d Ly e Ay f Y
) y=J(@) y=7f@)
- 0 . < - .
I — x 0] T [0) T
y=f(x)
A\ A

2 Which of the functions y = |f(x)| in question 1 are one-one?

3 Suppose the range of y = f(z) is {y:—6 <y < 2}. Write down the range of y = |f(z)].
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4 Determine whether the following statements are true or false:
a If y= f(x) is one-one, then y = |f(z)| is one-one.
b If y= f(z) is not one-one, then y = |f(x)| is not one-one.
¢ The graphs of y = f(x) and y = |f(x)| always meet the z-axis at the same point(s).
d The graphs of y = f(z) and y = |f(z)| always meet the y-axis at the same point.

Example 11 %) Self Tutor

Draw the graph of y = |3z + 3.

We first draw the graph of y = 3z + 3. by
The part of the graph that is below the z-axis is then
reflected in the z-axis to produce y = |3z + 3|. 3
|3z + 3|
- 3 /0 T
y=3z+ 3:" _3
V’ \
5 Draw the graph of:
a y=|z| b y=|z+3 ¢ y=1[6—2z|
d y=|3z+1] e y=|10— 4z f y:}%x+2|

1| [COMPOSITE FUNCTIONS

Given f:xz+— f(z) and g¢g: x+— g(z), the composite function of f and g will convert

x into f(g(x)).
fog or fg is used to represent the composite function of f and g. It means “f following g”.
(fog)(z) or fg(x) = f(g(x))

4

Consider f:z+—2z* and g: z+— 2x+3.

fog means that g converts = to 2z + 3 and then f converts (2z +3) to (2x + 3)%.
x

l [ g-function machine
I double 2z +3 'Notice h.()W f
and then is following g.
add 3 l i f-function machine
2z 13 I raise a \—\

number to
the power 4

So, (fog)(x) = (2z+3)*. 2w+3
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Algebraically, if f(z) =2* and g(z) =2r+3 then

(fog)(z) = flg(x)) Q

= f(2z+3) {g operates on z first}

= (2z+3)*  {f operates on g(x) next} ;1
and (go f)(x) = g(f(z))

= g(z*) {f operates on z first}

=2(z*)+3  {g operates on f(z) next}

=22 +3

So, f(g(x)) # g(f(=)).
In general, (f og)(z) # (g0 f)(=).

We can also compose a function f with itself. The resulting function is (f o f)(z) or f2(z).

In general, (fo f)(z) # (f(2))*.

Example 12 ) Self Tutor
Given f:x—2x+1 and g: xz+~— 3 — 4z, find in simplest form:
a (fog)(x) b gf(x) c f*(z)
f(x)=22x+1 and g(z)=3-4x
a (fog)x) b gf(z) c  fix)
= f(g()) =g(f(z)) = f(f(x))
= f(3 —4x) =g(2z+1) = f(2z+1)
=2(3—4z)+1 =3—-4(2z+1) =22z+1)+1
=6—-8zr+1 =3—-8x—4 =4dr+2+1
=7—-8 =—-8xr—1 =4x+3

In the previous Example you should have observed how we can substitute an expression into a function.

If f(x)=2x+1 then f(A)y=2(A)+1
o f(3—4x)=2(3 —4x)+ 1.

Example 13 u) Self Tutor
Given f(z)=6z—5 and g(z)=2?+z, determine:
a (gof)(-1) b (fof)(0)
a (9o f)(=1)=yg(f(-1)) b (fof)(0)=r(£(0)
Now f(-1)=6(-1)-5 Now f(0)=6(0)—5
= —11 =-5
(9o f)(=1) = g(-11) s (fof)0) = £(=5)
= (—11)* 4+ (—11) =6(-5)—5

=110 =-35
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The domain of the composite of two functions depends on the domain of the original functions.

For example, consider f(z) = 2? with domain = € R and g(x) = /z with domain z > 0.

(fog)(x) = flg(x))

= (Vz)? The domain of (fog)(z) is x>0, notR, since (fog)(x)
=z is defined using function g(x).
EXERCISE 2E
1 Given f:2z+—2x+3 and ¢g: x+— 1—2, findin simplest form:
a (fog)(x) b (gof)(z) c (fog)(=3)
2 Given f(z)=2+z and g(zr)=3-—=z, find
a fg(x) b gf(z) c f*(z)
3 Given f(z)=+6-2 and g(z)=5x—7, find:
a (gog)(z) b (fog)1) ¢ (9o f)(6)

2

4 Given f:zw—z* and g:z—2—x, find (fog)(z) and (go f)(x).

Find also the domain and range of fog and go f.
5 Suppose f(z)=3z+5 and g(x)=2x—3.
a Find (fog)(x). b Solve (fog)(z)=g(x—2).
6 Suppose f:xr2?>+1 and g:x+— 3 —2.
a Find in simplest form: i fg(x) ii gf(x)
b Find the value(s) of = such that gf(z) = f(x).

7 a If ar+b=cx+d forall values of x, show that a = ¢ and b = d.
Hint: If it is true for all x, it is true for x =0 and x = 1.
b Given f(z) =2x+3 and g¢(z) =ar+b andthat (fog)(x) ==z for all values of z,

deduce that a =3 and b= —3.

¢ Is the result in b true if (go f)(z) =2 for all 2?

Given f(z)=+1—z and g(z)=22 find:
a (fog)(x) b the domain and range of (f o g)(x).

|| |SIGN DIAGRAMS

Sometimes we do not wish to draw a time-consuming graph of a function but wish to know when the
function is positive, negative, zero, or undefined. A sign diagram enables us to do this and is relatively
easy to construct.

For the function f(z), the sign diagram consists of:

e a horizontal line which is really the z-axis

e positive (4+) and negative (—) signs indicating that the graph is above and below the x-axis respectively

e the zeros of the function, which are the z-intercepts of the graph of y = f(z), and the roots of the
equation f(xz) =10

e values of = where the graph is undefined.
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Consider the three functions given below.

Function y=(r+2)(xz—1)

b Y

sY
A
N
//'

Graph N b (¢} g
-2\ O /51 z
. .
Sign I e e T T
diagram | = -2 1 E 1 z | 0 T
You should notice that: DEMO
e A sign change occurs about a zero of the function for single linear factors such as (z+2) S
and (z —1). This indicates cutting of the z-axis. | K
e No sign change occurs about a zero of the function for squared linear factors such as
(x —1)2. This indicates touching of the x-axis.
° indicates that a function is undefined at = = 0.
0
In general:
e when a linear factor has an odd power there is a change of sign about that zero
e when a linear factor has an even power there is no sign change about that zero.
Example 14 ) Self Tutor
Draw sign diagrams for:
a Ay b Ay r=3
1 4 P o Z
T X
1
g 2
z=-2ly vy
a b
-+, -+ + + -
-t > T -t » T
-2 1 4

|

N
ol [—
w
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EXERCISE 2F

1 Draw sign diagrams for these graphs:

A

o
-
]Y

Il
()
SY

Example 15 ) Self Tutor
Draw a sign diagram for:
a (z+3)(z-1) b —4(z-3)2
a (z+3)(x—1) has zeros —3 and 1. b —4(x —3)? has zero 3.
J’_ —
- ‘ ‘ f ez - ‘ 4 > T

-3 1

We substitute any number > 1.
When x =2 we have (5)(1) > 0,
so we put a + sign here.

As the factors are single, the signs
alternate.

3

We substitute any number > 3.
When = =4 we have —4(1)2 <0,
so we put a — sign here.
As the factor is squared, the signs do
not change.

\
8
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2 Draw sign diagrams for:

a (z+4)(z—2) b z(zx—3) c z(z+2)
d —(z+1)(z—-3) e (2r-1)3—x) f b—x)(1-22)
g (v+2)? h 2(z-3)2 i —3(z+4)?
Example 16 %) Self Tutor
. . ®=1
Draw a sign diagram for .
2z + 1
i is zero when x =1 and undefined when z = —%.
2x + 1
i | T When 2 =10, vl _ 9y
- 1 > 2z+1 21
2

Since (z—1) and (2x+ 1) are single factors, the signs alternate.

3 Draw sign diagrams for:

a x+ 2
r—1
d r — 1
2—zx
(z —1)?
g ——
T
. z(x—1)
) 2—x

4 Draw sign diagrams for:

3
r+1

a 1+

=1/ INVERSE FUNCTIONS

+ -+
-« > T
_1 1
2
b x c 2x 4+ 3
r+3 4—z
3 —
e T f 8x
T —2 3—x
h 4z i (x+2)(x—1)
(z+1)2 3—x
K (x+2)(x —2) " 33—z
—x 2z + 3)(x — 2)
1 1
b z—- c r——

The operations of + and —, X and -+, are inverse operations as one undoes what the other does.

For example, z+3—-3=2 and xx3+3=ux.

The function y =2x+ 3 can be “undone” by its inverse function y =

x—3
2

We can think of this as two machines. If the machines are inverses then the second machine undoes what

the first machine does.

No matter what value of x enters the first machine, it is returned as the output from the second machine.
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4

input lL

y=2zx+3 output
1y
1

1
input lLl _3
Y= 2 ,—|l output
4

However, not all functions have an inverse function.

For example, consider the function y = 2. The inputs —3 and 3 both produce an output of 9.

y=a’ 1 l output

-3 3

input l Ll input l
y=z’ ,—| l output

5

9 9
So, if we gave an inverse function the input 9,
how would it know whether the output should be input l E
—3 or 3? It cannot answer both, since the inverse i i e
function would fail the vertical line test. — l output
—3or 3?

So, if a function has two inputs which produce the same output, then the function does not have an inverse
function.

For a function to have an inverse, the function must be one-one. It must pass the horizontal line test.

If y= f(z) has an inverse function, this new function: #-1 is not the

o is denoted f~(z) reciprocal of f.

1
e s the reflection of y = f(z) in the line y == Y (z) £ @
o satisfies (fof N(z)=z and (f~lof)(z)=u=.

The function y =z, defined as f: = — z, is the identity function.
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Example 17 ) Self Tutor
If y= f(z) has an inverse function, sketch y = f~!(z), and state the domain and range of f(z)
and f~1(z).

a AY b AY ¢ Ay
(4,2)
/N Py
- > - o > - / >
¢ ’ 0 -0 y=5@) 20 '
A A A

a The function fails the horizontal line test, so it is not one-one. The function does not have an
inverse function.

b f(z) has domain {z:0 <z <4}

and range {y:—1<y <2}

f~'(x) has domain {z:-1<x <2}
and range {y:0 <y <4}

y=f~(x) is the reflection
of y= f(z) intheline y=z.

N

f(z) has domain {z:xz > —2}
and range {y:y > 0}.

f~'(x) has domain {z:z > 0}
and range {y:y > —2}.

From Example 17, we can see that:

The domain of f~! is equal to the range of f.

The range of f~! is equal to the domain of f.
If (z, y) lies on f, then (y, z) lies on f~1. Reflecting the function in the line y = z has the algebraic
effect of interchanging x and y.

So, if the function is given as an equation, then we interchange the variables to find the equation of the
inverse function.

For example, if f is given by y =5z +2 then f~!is givenby x = 5y+ 2.
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Example 18 ») Self Tutor

Consider f: x— 2x + 3.
a On the same axes, graph f and its inverse function f~1.
b Find f~!(x) using variable interchange.
¢ Check that (fo f 1) (z)=(f"1tof)(z)=nx.

a f(z)=2x+3 passes through (0, 3) and (2, 7).
f~1(x) passes through (3,0) and (7, 2). If £ includes point (a, b),
W dy=f) | then f ~! includes point (b, a).
,'.'1(2, 7) y: T \\
(0,3), y=["'(z) v
(7.2) =4
(3.0) C
b fis y=2+3 ¢ (fof )@ ad  (fof)
“his x=2y+3 =f(f (=) = fH(f(2))
L r—3=2 _r(z=3 = f 1 (22 +3)
z=3_, f< 23> _ (2w+3)-3
_12 r—3 =7 ( 2 ) " 2x i
[ (z) = 2 =z iy
=z

Any function which has an inverse, and whose graph is symmetrical about the line y =z, isa
self-inverse function.

If f is a self-inverse function then f~! = f.

For example, the function f(z) = l, x # 0, is said to be
x

self-inverse, as f = f~ L.
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EXERCISE 2G
1 If y = f(x) has an inverse function, sketch y = f~!(z), and state the domain and "'é',{f,’f‘:é £
range of f(z) and f~1(x). |
a Ay b \y c v o E
5
|

950 T

v=1t2) ‘ N :(j: y=f)

o
<Y

A

2 Which of the functions in 1 is a self-inverse function?
3 If the domain of H(z) is {z:—2 <z <3}, state the range of H!(z).

4 For each of the following functions f:

i On the same set of axes, sketch y =z, y = f(z), and y = f~(z).
il Find f~!(x) using variable interchange.

a fiz—3zx+1 b f:m»—>x+2
5 For each of the following functions f:
i Find f~!(z).
ii Sketch y= f(a:), = f~1(x), and y = on the same set of axes.
iii Showthat (f~'of)(z)=(fof ')(x) =, the identity function.
a fix—2x+5 b f:z—a2+3 c f:a:»—>m+6

6 Given f(r)=2r—5, find (f~')~!(z). What do you notice?
7 Sketch the graph of f: 2+ 2% and its inverse function f~1(x).

8 Given f:xm— —, x#0, find f~! algebraically and show that f is a self-inverse function.
T
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9 Consider the function f(z) = 3z — 1.
a Find f!(z).
b Find: i (fof')(x) i (1o f)(@).

10 Consider the functions f:z+—2rx+5 and g:z— S_Tm.

a Find g !(-1). b Show that f~(—3)— g 1(6) =0.
¢ Find z such that (fog~!)(z) =09.

11 Consider the functions f:z+— 5% and g:z+— /.
a Find: i f(2) i g4
b Solve the equation (g~ !o f)(z) = 25.

12 Which of these functions is a self-inverse function?

a f(z)=2x b f(zr)==2 c f(z)=—x
d f($)=% e f(x):—g f fla)="2

3
13 Given f:z—2z and g:x~ 4z —3, showthat (f~log 1)(z)=(gof) ().

Discovery Functions and form

1 3 5

We already know that numbers have equivalent forms. For example, 5, %, 15,

same number.

and 0.5 all represent the

Similarly, a function might have different, but equivalent, algebraic representations.

Choosing a particular form for an expression helps us understand the behaviour of the function better.
By anticipating what you are going to do with your function you can choose a form which will make
the task easier.

For example, you will have seen in previous years that the equation of a straight line can be written in:
e gradient-intercept form y = ma + ¢ where m is the gradient and the y-intercept is ¢
e point-gradient form y — b= m(z —a) where the line goes through (a, b) and has gradient m

e general-form Az + By = D.

A given straight line can be converted between these forms easily, but each emphasises different features
of the straight line.

What to do:
1 What different forms have you seen for a quadratic function y = ax? + bz + ¢?

2 Two expressions f(z) and g(z) are equivalent on the domain D if f(z) = g(x) forall = € D.

2 _
a Discuss whether: f(z) = Z and g(x) =x + 1 are equivalent on:
-
i zeR ii zeR™ iii {z:2z>1} iv {zeR:z#1}

b When considering algebraically whether two functions are equivalent, what things do we need
to be careful about?

22—1 (z+(x—1)

r—1 z — 1

Hint: =xz+1 onlyif z#1.
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Review set 2A

1 Determine whether the following relations are functions:

@)
<Y

2 Suppose f(z)=ax+b where a and b are constants.
If f(1)=7 and f(3) = —5, find a and b.

3 Solve for x:

a |zt—5|=7 b 22+ 1| = |z —4]
4 If g(z)=2%—3x, find in simplest form:

a g(-2) b g(z+1)

5 For each of the following functions:

i find the domain and range ii determine whether the function is one-one.
a y b \g c sy
/ Pl S
(=3,2) - > = -1 (O o

/'y
2
<Y
o
8

6 Draw the graph of y = |f(z)| for: Plé'::::;i
a b
by Ay /'S A

~ i

Y= () y=f(z)
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Draw the graph of y = |2z — 1]
8 Draw a sign diagram for:
z—3
9 If f(r)=2r—3 and g(z)=2?+2, find in simplest form:
a fg(z) b gf(z)
= 1 = {1 PRINTABLE
10 If y = f(z) has an inverse, sketch the graph of y = f~'(x). R Tane
a AY b LY C
oA
w2 - g
y=1f(z)
2 y=
) s 2 y=1() .
“5 — - 5 > -
A v
11 Find f~!(z) given that f(z) is:
a 4v+2 p 252
4
12 Consider f(z) =22 and g(z)=1-6x
a Show that f(—3) =g(—%). b Find (fog)(-2).

¢ Find z such that g(z) = f(5).

13 Given f:z—3z+6 and h:z+—

Review set 2B

g, show that (f~*oh™1)(z) = (ho f)~ ().

1 Determine whether the following relations are functions. If they are functions, determine whether

they are one-one.

) ‘y/v b 1Y
(=2,4)
T (290 z (_2’1)'/— .
2 - O :Vl:
\ ¥
(4
Y




62 Functions (Chapter 2)

2 Given f(z)=2%+3, find:

a f(-3) b 2 such that f(z) = 4.
3 Solve for x:
a |[1-2z=11 b |5z —1| = |9z — 13|
4 Draw a sign diagram for each graph:
a by < y
\
" -2 |0 3
< 0 ~ o
Y

5 Given h(z)=7-—3z, find:
a h(2z-1) b h%(z) c h2(-1)
6 Suppose the range of y = f(z) is {y:—7<y < —3}. Write down the range of y = |f(x)|.
7 Draw the graph of y = |1 — }z|.
8 Suppose f(z)=1-—2z and g(z)=>5=x.
a Find in simplest form: i fg(z) ii gf(z).
b Solve fg(z)=g(z+2).
9 Suppose f(x)=az®+bx+c, f(0)=5, f(—2)=21, and f(3) = —4. Find a, b, and c.
10 If y = f(x) has an inverse, sketch the graph of y = f~!(z):

a b c PRINTABLE

y \y Ay DIAGRAMS
3 o -
AA-/ _ < . ¢ K
N [9) T 4 [0) 4 T 0 T
/2
A A Y

11 Find the inverse function f~!(z) for:

a f(z)=7—4z b f(:c):3+2w

12 Given f:z—5zx—2 and h:z+— %, show that (f~toh 1) (z) = (ho )~ (z).

13 Given f(z)=2z+11 and g(z) =22, find (go f~1)(3).
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Opening problem

Abiola and Badrani are standing 40 metres apart, throwing a ball between them. When Abiola throws
the ball, it travels in a smooth arc. At the time when the ball has travelled  metres horizontally towards
Badrani, its height is y metres.

Ay
Abiola Badrani %

z (m) 0 5 10 15 20 25 30

y(m) | 1.25 | 10 | 16.25 | 20 | 21.25 | 20 | 16.25

Things to think about:

b
c
d

Use technology to plot these points.

What shape is the graph of y against x?

What is the maximum height reached by the ball?

SIMULATION

B

What formula gives the height of the ball when it has travelled x metres horizontally towards

Badrani?

Will the ball reach Badrani before it bounces?

Historical note

Galileo Galilei (1564 - 1642) was born in Pisa, Tuscany. He was a philosopher who played a significant

role in the scientific revolution of that time.

Within his research he conducted a series of experiments on the paths of projectiles, attempting to find

a mathematical description of falling bodies.

Two of Galileo’s experiments consisted of rolling a ball down a grooved ramp
that was placed at a fixed height above the floor and inclined at a fixed angle to
the horizontal. In one experiment the ball left the end of the ramp and descended
to the floor. In the second, a horizontal shelf was placed at the end of the ramp,

and the ball travelled along this shelf before descending to the floor.

In each experiment Galileo altered the release height A of the ball and measured
the distance d the ball travelled before landing. The units of measurement were

called ‘punti’ (points).

In both experiments Galileo found that once the ball left the ramp or shelf; its
path was parabolic and could therefore be modelled by a quadratic function.

Galileo
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QUADRATICS

A quadratic equation is an equation of the form ax? +bx +c=0 where a, b, and c are
constants, a # 0.

A quadratic function is a function of the form y = ax? +bx +c, a #0.

Quadratic functions are members of the family Polynomial function Type
of polynomials. The first few members of this — b 0 T
family are shown in the table. y=az+tb az fnear
y=az’+br+c, a#£0 quadratic
y=ard+br’>+cr+d, a#0 cubic

y=ax*+bxd+cx® +dr+e a#0 | quartic

Acme Leather Jacket Co. makes and sells = leather jackets each

ACME ,
week. Their profit function is given by LEATUER JACKET CO.
P = —12.52% 4+ 550z — 2125 dollars. , e

How many jackets must be made and sold each week in order to
obtain a weekly profit of $3000?

Clearly we need to solve the equation:
—12.52% + 550z — 2125 = 3000
We can rearrange the equation to give

12.522 — 550z 4+ 5125 = 0,

which is of the form ax? +bx+c=0 and is thus a quadratic equation.

SOLVING QUADRATIC EQUATIONS

To solve quadratic equations we have the following methods to choose from:
e factorise the quadratic and use the rule:
If ab=0 then a=0 or b=0.
e complete the square

e use the quadratic formula
e use technology.

The roots or solutions of ax? + bz +c =0 are the values of = which satisfy the equation, or make it
true.

For example:  Consider z2 — 3z + 2= 0.
When =2, 2% —3z+2=(2)?-3(2)+2
=4-6+2
=0 v

So, & =2 is aroot of the equation 22 — 3z +2 =0.
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SOLVING BY FACTORISATION

Step 1: If necessary, rearrange the equation so one side is zero.
Step 2:  Fully factorise the other side.
Step 3:  Apply the rule: If ab=0 then a=0 or b=0.

Step 4:  Solve the resulting linear equations.

Example 1 %) Self Tutor
Solve for x:
a 322+5z=0 b 22=5z+6
a 322 + 52 =0 b 22 =52+6
z(3z+5)=0 o —5r—-6=0
x=0or 3z+5=0 S (z—=6)(z+1)=0
=0 orx:—g . x=6 or —1
Example 2 W) Self Tutor
Solve for z:
a 422 +1=4x b 622 =11z + 10
a 402 +1 =4z b 622 = 11z + 10
422 — 4z +1=0 o622 —11z—-10=0
(2z—1)2=0 S (2r-5)Bx+2)=0
. . _ 2
r=3 ox=5or -2

Caution:

e Do not be tempted to divide both sides by an expression involving .
If you do this then you may lose one of the solutions.

For example, consider 2 = 5z.

Correct solution Incorrect solution
z? =5z 2% =5z
22 -5 =0 22 sy By dividing both sides
z(z—5)=0 ST ?/ by x, we lose the solution
. _ z=0.
z=0o0rb . r=95

e Be careful when taking square roots of both sides of an equation. You may otherwise lose solutions.
For example:

» Consider z2 = 25.

Correct solution Incorrect solution
2 =25 z? =25
r=+vV25 C.o x=+vV25

T =15 . r=25
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» Consider (2r—7)% = (z+1)2
Correct solution
(22 —7)% = (z + 1)?
(2r -7 - (z+1)*=0
e —T74+24+1)2z—-7T—2—-1)=0
3z —6)(z—8)=0

r=2o0r8
EXERCISE 3A.1
1 Solve the following by factorisation:
a 422+ 7x=0 b 622+2r=0
d 22211z =0 e 312 =28z
g 22-52+6=0 h 22=2zx+38
J 9+a2% =6z k 2?2 +2=12
2 Solve the following by factorisation:
a 922 -12x+4=0 b 222 13z -7=
d 322 +5r=2 e 212 +3=">5z
g 322=10z+38 h 42?2 + 42 =3
i 1222 =11z + 15 k 722+ 6z=1

Example 3

Incorrect solution
(22 —7)% = (z 4+ 1)?

20 —T=x+1
r=2_8
32 —Tx=0
f 9z = 622
i 22421 =10z
I 22 +8z =33
0 ¢ 322 =16x+ 12

f 322 +8x+4=0
i 422 =11z +3
I 1522 + 2z =56

w) Self Tutor

Solve for x: 3x + % = =7

3+ 2= _7
X

T (33:—|— z) =—Tx
xT

322 +2=—Tx
32+ T +2=0

(x+2)3z+1)=0 {factorising}
T =—-2o0r —%
3 Solve for z:
a (r+1)2=222-5z+11 b
c 5—4r2 =32x+1)+2 d
e 22—+ ——1 f

T

SOLVING BY ‘COMPLETING THE SQUARE’

{multiplying both sides by x}

{expanding the brackets}
{making the RHS 0}

RHS is short for
Right Hand Side.

2
T+ =-=3
T
:c+3__9
1—x x

As you would be aware by now, not all quadratics factorise easily. For example, 22 + 4z 4+ 1 cannot be

factorised by simple factorisation. In other words, we cannot write z? +4x +1 in the form (x —a)(x —b)

where a, b are rational.
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An alternative way to solve equations like 2% + 4z +1=0 is by ‘completing the square’.

Equations of the form az? + bz +c¢ = 0 can be converted to the form (z + p)? = ¢, from which the
solutions are easy to obtain.

Example 4 ) Self Tutor
Solve exactly for x:
a (r+2)?2=7 b (r—1)2=-5
a (r+232=7 b (z—1)2=-5
42 =47 has no real solutions since
Y the square (x —1)? cannot

be negative.

The completed square form of an equation is (z + p)? = q.
If we expand this out, z? + 2px + p? = q.
Notice that the coefficient of © equals 2p. Therefore, p is half the coefficient of = in the expanded form.

If we have 2% + 2pr = ¢, then we “complete the square” by adding in p? to both sides of the equation.

Example 5 %) Self Tutor The squared number we
add to both sides is
Solve for exact values of x: 2 +4r+1=0 coefficient of z ) 2
(=)
P +4x+1=0
ox? 4 dr =1 {put the constant on the RHS}
x4 2t=-1+422 {completing the square}
(z+2)*=3 {factorising LHS}
z+2==+V3
L r=-2£V3
Example 6 ) Self Tutor
. _a.2 _
Solve exactly for z: 3z +12x+5=0 If the coefficient of 2

is not 1, we first divide

2 _
=3z +122+5=0 throughout to make it 1.

2’ —4z—-3=0 {dividing both sides by —3}
T % {putting the constant on the RHS}
22 — 4o+ 2% = 24 22 {completing the square}
(z—2)? =4I {factorising LHS}
r—2="44/L
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EXERCISE 3A.2
1 Solve exactly for x:
a (r+5?2?=2 b (z+6)2=-11 c (r—4)?%2=38
d (z—-8)?2=7 e 2(r+3)2=10 f 3(z—-2)2%=18
g (z+1)2+1=11 h 2z+1)2=3 i (1-32)2-7=0
2 Solve exactly by completing the square:
a 22—4x+1=0 b z2+6x+2=0 ¢ 2 —14x+46=0
d 22=42+3 e 224+6x+7=0 f 22=22+6
g 22+6x=2 h 224+10=28z i 2246z=-11
3 Solve exactly by completing the square:
a 222 +42+1=0 b 222 —-10z+3=0 ¢ 3224+ 122+5=0
d 322 =6x+4 e 522 —-152+2=0 f 422 +42x=5
4 Solve for z:
a 3x—-2-4 b 1-2= 52 ¢ 3+ =—2
x x x x

5 Suppose ax?+bx +c=0 where a, b, and ¢ are constants, a # 0.
Solve for x by completing the square.

THE QUADRATIC FORMULA

Historical note The quadratic formula

Thousands of years ago, people knew how to calculate the area of a shape given its side lengths. When
they wanted to find the side lengths necessary to give a certain area, however, they ended up with a
quadratic equation which they needed to solve.

The first known solution of a quadratic equation is written on the Berlin Papyrus from the Middle
Kingdom (2160 - 1700 BC) in Egypt. By 400 BC, the Babylonians were using the method of ‘completing
the square’.

Pythagoras and Euclid both used geometric methods to explore the problem. Pythagoras noted that the
square root was not always an integer, but he refused to accept that irrational solutions existed. Euclid
also discovered that the square root was not always rational, but concluded that irrational numbers did
exist.

mathematician Brahmagupta devised a general (but incomplete) solution
ero to our number system

A major jump forward was made in India around 700 AD, when Hindu
[ Brahmagupta also added ]
z !

for the quadratic equation az? + bz = ¢ which was equivalent to

\/4ac+ b2 —b

= Taking into account the sign of ¢, this is one of the
a

two solutions we know today.

The final, complete solution as we know it today first came around
1100 AD, by another Hindu mathematician called Baskhara. He was
the first to recognise that any positive number has two square roots, which
could be negative or irrational. In fact, the quadratic formula is known in
some countries today as ‘Baskhara’s Formula’.
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While the Indians had knowledge of the quadratic formula even at this
early stage, it took somewhat longer for the quadratic formula to arrive in
Europe.

Around 820 AD, the Islamic mathematician Muhammad bin Musa
Al-Khwarizmi, who was familiar with the work of Brahmagupta,
recognised that for a quadratic equation to have real solutions, the value
b?> — 4ac could not be negative. Al-Khwarizmi’s work was brought to
Europe by the Jewish mathematician and astronomer Abraham bar Hiyya e 1
(also known as Savasorda) who lived in Barcelona around 1100. Muhammad Al-Khwarizmi

By 1545, Girolamo Cardano had blended the algebra of Al-Khwarizmi
with the Euclidean geometry. His work allowed for the existence of
complex or imaginary roots, as well as negative and irrational roots.

From the name
Al-Khwarizmi we get
the word ‘algorithm’.

N\

At the end of the 16th Century the mathematical notation and symbolism
was introduced by Francois Viéte in France.

In 1637, when René Descartes published La Géométrie, the quadratic
formula adopted the form we see today.

— 2 _
If ax®+bx+c=0, a#0, then == e 2b dac
a
Proof: If az®+br+c=0, a#0
then 2+ by +£=0 {dividing each term by a, as a # 0}
a a
i =-=
a a
2 b b2 G b2 .
& 4F =@ F (—) =—+ (—) {completing the square on LHS}
a 2a a 2a
b\2 b2 —dac ..
(x + Z) =1 {factorising}
b2 — dac
— = :I:
o 2a 402
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For example, consider the Acme Leather Jacket Co. equation from page 65.

We need to solve: 12.52% — 550 4+ 5125 = 0
so in this case a = 12.5, b= —550, c¢=5125

Trying to factorise this
550 & /(—550)2 — 4(12.5)(5125) equation or using
= 2(12.5) ‘completing the square’
would not be easy.
550 4 /46 250 \ [

25
~ 30.60 or 13.40 M

However, for this application the number of jackets = needs to be a whole
number, so x = 13 or 31 would produce a profit of around $3000 each

week.
Example 7 ) Self Tutor
Solve for x:
a z2-2z—-6=0 b 222+3xz—-6=0
a 22 —-22x—6=0 has b 222+3x—6=0 has
a=1, b=-2, ¢c=—-6 a=2, b=3, c=-6
 —(=2) £ /(—2)2 — 4(1)(—6) . _ —3+4/32-4(2)(-6)
T = 20 ST = 2@
x:2i\/24+_24 $:73i\/9+—48
4
Ly 2EV28 Ly T3EVET
2 .. 4
2427
xr =
2
r=1+7
EXERCISE 3A.3
1 Use the quadratic formula to solve exactly for x:
a 22—42-3=0 b 224+62+7=0 c 22+1=4z
d 22 +4z=1 e z2—4x+2=0 f 222—-2x—-3=0
g 322—-5zx—-1=0 h —224+42+6=0 i —222472-2=0

2 Rearrange the following equations so they are written in the form az? + bx + ¢ = 0, then use the
quadratic formula to solve exactly for x.

a (r+2)(z—1)=2-3z b 2z+1)?=3-2z c (-2 =1+x
d 3z+1)2=-2z e (z+3)2z+1)=9 f 2z+3)2zx-3) ==z
g ol _9p 41 h o- =1 i 2r - L1—=3

2—x T x



72 Quadratics (Chapter 3)

171 lQuabRaTic INEQuaLITiES

An equation is a mathematical statement that two expressions are equal.

Sometimes we have a statement that one expression is greater than, or else greater than or equal to, another.
We call this an inequality.

22 + 72 > 18 is an example of a quadratic inequality.

While quadratic equations have 0, 1, or 2 solutions, quadratic inequalities may have 0, 1, or infinitely many
solutions. We use interval notation to describe the set of solutions.

To solve quadratic inequalities we use these steps:

e Make the RHS zero by shifting all terms to the LHS.
e Fully factorise the LHS.

e Draw a sign diagram for the LHS.

e Determine the values required from the sign diagram.

Example 8 %) Self Tutor
Solve for z:
a 3x2+4+5x>2 b 22+9<6z
a 32% 4+ 51 > 2 b 2 +9 < 62
32° + 52 —2 >0 {make RHS zero} o 22 —6x+9<0 {make RHS zero}
Bz —1)(x +2) >0 {factorising LHS} o (x—3)? <0 {factorising LHS}
Sign diagram of LHS is Sign diagram of LHS is
D . + | + N
—9 % T 3 T
r< -2 or > % So, the inequality is not true for any real z.
EXERCISE 3B
1 Solve for z:
a (z—2)(x+3)=0 b (z+1)(z—4)<0 c 2z+1)(xz—3)>0
d 22—-z>0 e 22> 3z f 322+22x<0
g 22<4 h 222 >18 i 224+4x+4>0
j 2+22-15>0 k 22 -112+28<0 I z(z+10) < —24
m z2—-30> 13z n 222—-2-3>0 0 4z —4zx+1<0
p 622 +7r<3 q 322> 8(z+2) r 222 —4r+2<0
s 622 +1<5x t dr+1)Bx+2)>16x—4 u 2x+3)2<z+6

2 In 322 + 12012z, replace O with >, >, <, or < so that the resulting inequality has:
a no solutions b one solution ¢ infinitely many solutions.
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\THE DISCRIMINANT OF A QUADRATIC

In the quadratic formula, the quantity b — 4ac under the square root sign is called the discriminant.

The symbol delta A is used to represent the discriminant, so A = b* — 4ac.

where A replaces b — 4ac.

. b+t VA
The quadratic formula becomes x = —
a

o If A=0, z= ;—b is the only solution (a repeated or double root)
a

e If A>0, +A isa positive real number, so there are two distinct real roots
—b+ VA —-b— VA
rt=——— and z=—"—
2a 2a
e If A<O0, +A isnota real number and so there are no real roots.

e Ifa, b, and c are rational and A is a square then the equation has two rational roots which can be
found by factorisation.

Example 9 ) Self Tutor
Use the discriminant to determine the nature of the roots of:
a 2:2—-2zx+3=0 b 322—-40—-2=0
a A=10—4ac b A="% —4ac
= (-2) - 4(2)(3) = (—4)* —4(3)(-2)
Since A < 0, there are no real roots. Since A > 0, but 40 is not a square,

there are 2 distinct irrational roots.

Example 10 ) Self Tutor

Consider 22 — 2z 4+ m = 0. Find the discriminant A, and hence find the values of m for which
the equation has:

a a repeated root b 2 distinct real roots ¢ no real roots.
22 =2z +m=0 has a=1, b=-2, and c=m
A =b% — dac
= (=2)* — 4(1)(m)
=4—4m
a For a repeated root b For 2 distinct real roots ¢ For no real roots
A=0 A>0 A<O0
© 4—4m =0 .o 4—4m >0 c.4—4m <0
4 = 4m c.o —4dm > —4 c.o—4dm < —4

m=1 C.om< ] coom>1
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Example 11 ) Self Tutor

Consider the equation kz? + (k + 3)z = 1. Find the discriminant A and draw its sign diagram.
Hence, find the value of k£ for which the equation has:

a two distinct real roots b two real roots
¢ a repeated root d no real roots.

kx? +(k+3)z—1=0 has a=k, b=(k+3), and c=—1
A = b — dac
= (k+3)* —4(k)(-1)
= k% + 6k + 9+ 4k

=k*+ 10k +9
=(k+9)(k+1) So, A has sign diagram: = + ‘9 — ‘1 RENY
a For two distinct real roots, A>0 . k<-9 o k>-1, E#£0.
b For two real roots, A>20 . k<-9or k>-1, E#£0.
¢ For a repeated root, A=0 . k=-9 or k=-1.
d For no real roots, A<0 . -9<k<-—-L
Summary:
Factorisation of quadratic Roots of quadratic Discriminant value
two distinct linear factors two real distinct roots A>0
two identical linear factors | two identical real roots (repeated) A=0
unable to factorise no real roots A<0
EXERCISE 3C
1 By using the discriminant only, state the nature of the solutions of:
a 22+7x-3=0 b z2-3x+2=0 c 322 +22-1=0
d 522 +4x—-3=0 e ’+z2+5=0 f 1622 -8z +1=0

2 By using the discriminant only, determine which of the following quadratic equations have rational roots
which can be found by factorisation.

a 622 —-5x—-6=0 b 222 —7r—5=0 ¢ 322 +4z+1=0
d 622 - 472 —-8=0 e 42> -3x+2=0 f 822+22-3=0

3 For each of the following quadratic equations, determine the discriminant A in simplest form and draw
its sign diagram. Hence find the value(s) of m for which the equation has:

i arepeated root il two distinct real roots ifi no real roots.

a 2?2+4zx+m=0 b mz2+3z+2=0 c mx?—3x+1=0
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4 For each of the following quadratic equations, find the discriminant A and hence draw its sign diagram.
Find all values of k for which the equation has:

i two distinct real roots ii two real roots iii a repeated root iv no real roots.
a 202 +kx—k=0 b kx?-2x+k=0
¢ 22+ (k+2)z+4=0 d 222+ (k—2)z+2=0
e 2+ (3k—1)z+ (2k+10)=0 f (k+D)a2?+krx+k=0
A quadratic function has the form y = az? 4+ bz + ¢ where a # 0. Ay
10
The simplest quadratic function is y = 2. Its graph can be
drawn from a table of values. 8
3| -2|-1]0 (1] 2] 3 6
9 4 1 0|1 4
L 2
The graph of a quadratic function is called a parabola. 2 ya e
T T2 0] 2 i
A\

The parabola is one of the conic sections, the others being circles, hyperbolae,

and ellipses. They are called conic sections because they can be obtained by

_____ cutting a cone with a plane. A parabola is produced by cutting the cone with a
\ plane parallel to its slant side.

There are many examples of parabolas in everyday life, including water fountains, suspension bridges, and
radio telescopes.
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TERMINOLOGY

The graph of a quadratic function y = ax? + bz + c,
a # 0 1is called a parabola. 4y

The point where the graph ‘turns’ is called the vertex.

If the graph opens upwards, the vertex is the minimum
or minimum turning point, and the graph is concave
upwards.

parabola

P axis of symmetry

If the graph opens downwards, the vertex is the maximum
or maximum turning point, and the graph is concave
downwards.

x-intercept z-intercept

y-intercept

The vertical line that passes through the vertex is called the minimum—>5
axis of symmetry. Every parabola is symmetrical about its vertex i
axis of symmetry. w

The point where the graph crosses the y-axis is the
y-intercept.

The points (if they exist) where the graph crosses the x-axis are called the x-intercepts. They correspond
to the roots of the equation y = 0.

Discovery 1 Graphing y = a(x — p)(x — q)
This Discovery is best done using a graphing package or graphics calculator. TG
What to do: PACKAGE
1 a Use technology to help you to sketch: g: :é
y=(@-D@-3). y=20-@-3. y=-@-1@-3), X

y=—-3(x—1)(z —3), and y=—2(z—1)(z—3)
Find the z-intercepts for each function in a.

What is the geometrical significance of ¢ in y = a(z — 1)(z — 3)?

2 a Use technology to help you to sketch:
y=2(x—1)(z —4), y =2(z — 3)(x —5), y=2(z+1)(z—2),
y = 2z(z + 5), and  y=2(z+2)(z+4)
Find the z-intercepts for each function in a.

What is the geometrical significance of p and ¢ in y = 2(x — p)(z — ¢)?

3 a Use technology to help you to sketch:
y=2(z —1)2, y = 2(z — 3)2, y=2(x+2)2, y = 2z
Find the z-intercepts for each function in a.

What is the geometrical significance of p in y = 2(z — p)??

4 Copy and complete:

e If a quadratic has the form y =a(z —p)(x —¢q) thenit ...... the z-axis at ......
2

e If a quadratic has the form y = a(x —p)* thenit ...... the x-axis at ......
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Discovery 2

Graphing y = a(x — h)?> + k

This Discovery is also best done using technology.

What to do:

1 a Use technology to help you to sketch:

y=(z—-3)2%+2,
y=—(z—3)%?+2,

y=2(z—3)%+2,
y=—-1(z-3)2+2

y=—-2(z—3)?+2,

GRAPHING
PACKAGE

O
b

b Find the coordinates of the vertex for each function in a.

¢ What is the geometrical significance of @ in  y = a(x — 3)% + 2?

2 a Use technology to help you to sketch:

y=2(x—1)2+3,
y=2(x+1)%+4,

y=2(x—2)2+4,
y=2(x+2)? -5,

and

y=2(zx—-3)%+1,
y=2(xr+3)2-2

b Find the coordinates of the vertex for each function in a.
¢ What is the geometrical significance of h and k in y = 2(x — h)? + k?

3 Copy and complete:

If a quadratic has the form y = a(x — h)? + k then its vertex has coordinates ......

The graph of y=a(z—h)>2+k isa

...... of the graph of y = ax

2 with vector ......

Quadratic form, a # 0

Graph

Facts

e y=a(z-p)(z—q)
p, q are real

x-intercepts are p and ¢

axis of symmetry is x = pTJrq

vertex is (1%, f(m))

2

o y=a(x—h)?

h is real

= [p

touches z-axis at i
axis of symmetry is * = h
vertex is (h, 0)

o y=alzx—h)?+k

axis of symmetry is * = h
vertex is (h, k)
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You should have found that a, the coefficient of 22, controls the width of the graph and whether it opens
upwards or downwards.

For a quadratic function y = ax?+bx+c, a#O0:

e a > (0 produces the shape \/ called concave up.

a < 0 produces the shape /\ called concave down.

o If -1<a<1, a#0 the graph is wider than y = z2.

If a<—1 or a>1 the graph is narrower than y = 22

Example 12 ) Self Tutor
Using axes intercepts only, sketch the graphs of:
a y=2(z+3)(z—-1) b y=-2(z—-1)(z—2) c y=3(z+2)?
a y=2xz+3)(z—-1) b y=-2(z—-1)(z—2) c y=1(z+2)?
has z-intercepts —3, 1 has z-intercepts 1, 2 touches z-axis at —2
When z =0, When z =0, When z =0,
y=2(3)(~1) y=—-2(-1)(-2) y=13(2)°
y-intercept is —6 .. y-intercept is —4 . y-intercept is 2
Y by Y

|
w
o
=
Y
o
514
I
[\
o
8

EXERCISE 3D.1
1 Using axes intercepts only, sketch the graphs of: The axis of symmetry
a y=(zx—4)(z+2) b f(z)=—(z—4)(z+2) is midway between
c y= Q(x + 3)(37 +5) d f(x) _ _3($ + 1)(x +5) the x-intercepts.
e f(a)=2(+3) fy——t@+2)? N

=S
2 State the equation of the axis of symmetry for each graph in question 1. v’

&

()



Quadratics (Chapter 3) 79
3 Match each quadratic function with its corresponding graph.
a y=2xz—-1)(zr—4) b y=—(z+1)(x—4) c y=(x—1)(z—4)
d y=(x+1)(z—4) e y=2(x+4)(x—-1) f y=-3(z+4)(z—-1)
g y=——(c— -4 h y=—3(c—1)—4)
) \s
o[/1 4\ = o[iIN__1 = = o IN__71 &
—4
A\
D E Y F ¥
‘ ’ \ /
- /\ —1 4 > - 0] >
Ol /1 4 o T -1 4 T
v
G Y
- - —4 1 -
T 4 O| /1 T (6] z
-8
Example 13 ) Self Tutor
Sketch the graph of y = |(z + 2)(z — 3)|.
We first sketch  y = (x + 2)(z — 3). ‘Y y=|(z+2)(z - 3)|
= (x+2)(z—3) has z-intercepts —2 and 3, and 6
y-intercept 2(—3) = —6.
The part of the graph that is below the z-axis is
then reflected in the z-axis to produce the graph of 0 %
y =z +2)(z-3)| .
e Y= @+ 2)(@-3)
\
4 Sketch the graph of:
a y=|(z+4)(z-5) b f(z) =[-(z - 1)(z—0)
¢ y=[2z—2)(x+2) d f(x)= |3 +3)
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Example 14 o) Self Tutor

Use the vertex, axis of symmetry, and y-intercept to graph y = —2(z + 1)? + 4.

The vertex is (—1, 4).

V(-1,4): Ay
The axis of symmetry is x = —1. :
When z =0, y=-2(1)>+4 N
=2 < o »
a < 0 so the shape is '/\
r=-1y
5 Use the vertex, axis of symmetry, and y-intercept to graph:
a y=(@x—-1)>2+3 b f(z)=2x+2)2%+1 c y=-2x—-1)2-3
d f(z)=3(z—3)2+2 e y=—-1(z—-1)%2+4 f fla)=—-%(x+2)?-3
6 Match each quadratic function with its corresponding graph:
a y=—(z+1)*+3 b y=-2(x—3)?2+2 c y=x2+2
d y=—(z-12+1 e y=(z—-2)2-2 f y==1(x+3)>-3
g y=—2° h y=—-1(z-1)72+1 i y=2@x+2)?2%-1
A Ay B

o, = .
TV

534

84
|

oo
SY

D . E Ay F "
< > 2
9
3 ) T\,
- o >
4 - >
—2 0 9 T -2
Y v v
G
2

ay R
A A

\

5 4
]Y
A
I
o O
-
G
=~
sY



Quadratics (Chapter 3) 81

SKETCHING GRAPHS BY ‘COMPLETING THE SQUARE’

If we wish to graph a quadratic given in general form y = ax? +bx +¢, one approach is to convert it to
the form y =a(z —h)?>+k where we can read off the coordinates of the vertex (h, k). To do this, we
‘complete the square’.

Consider the simple case y = x> — 6z + 7, A 1Y
for which a = 1. g

y=a>—6z+7
y=a®—6zx+3> +7-3°
—_—— ——

y= (@-3° -2 ;
So, the vertex is (3, —2). o2
To obtain the graph of y =2 —62z+7 from the -
graph of y = x2, we shift it 3 units to the right and
2 units down.
e v (3.-2)
Example 15 ) Self Tutor

Write y =22 +4x +3 inthe form y = (z —h)%2+k by ‘completing the square’.

Hence sketch y = 22 +4x + 3, stating the coordinates of the vertex.

y=a>+4x+3 2 vt 4
y=a’+4x+2>+3-2° . / fy=a?
y=(r+2)* -1 _—2.
y=2>+4z+3
shift 2 shift 1
units left unit down 0 »
The vertex is (—2, —1)
and the y-intercept is 3. vertex (=2,-1) v
Example 16 *) Self Tutor

a Convert y =322 —4x + 1 to the form y = a(z — h)? + k.

b Hence, write down the coordinates of its vertex and sketch the quadratic.

=3[2° — 3z + 1] {taking out a factor of 3}
=3[z —2(3)z+ (2>~ (3)°+ 3]  {completing the square}
=3[(z—2)* -3+ {writing as a perfect square}
=3[z - 5)* — 5]

=3(z-3)"—3
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b The vertex is (%, —3) Ay 2
and the y-intercept is 1. il
y=3x>—4dx+1
0 5,10 TR Ls "
v VG

EXERCISE 3D.2

1 Write the following quadratics in the form y = (x — h)? + k by ‘completing the square’. Hence
sketch each function, stating the coordinates of the vertex.

a y=22-2x+3 b y=224+4x -2 c y=2a%—4z
d y=22+3x e y=x2+5x—2 f y=22-3x+2
g y=22-6x+5 h y=224+8z—-2 i y=22-5x+1
2 For each of the following quadratics: )
] o a is always the factor
i Write the quadratic in the form y = a(z — h)? + k. T p—

il State the coordinates of the vertex.
ifi Find the y-intercept.
iv Sketch the graph of the quadratic.

a y=22+4x+5 b y=222—-8z+3
c y=22>—6x+1 d y=322—-6z+5
e y=—x2+4x+2 f y=—-222—-5:+3

UADRATIC FUNCTIONS OF THE FORM y = ax®> + bx + c
Q

We now consider a method of graphing quadratics of the form y = az? +bx+c directly, without having
to first convert them to a different form.

We know that the quadratic equation ax? +bx +c=0 has Yy . y=ar’+br+c
. —b— VA —b+ VA ‘
solutions ———— and ;r— where A = b?—4ac.
a a

If A >0, these are the z-intercepts of the quadratic function
y = azx? + bz + c.

. —b
The average of the values is E so we conclude that:
a

. . —b
e the axis of symmetry is = = ™
a

e the vertex of the quadratic has z-coordinate ;b
a
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To graph a quadratic of the form y = ax? + bz + ¢, we:
e find the axis of symmetry x = ;—b
a
e substitute to find the y-coordinate of the vertex
e state the y-intercept ¢

e find the z-intercepts by solving ax? + bx +c =0, either by factorisation or using the quadratic

formula.
Example 17 ) Self Tutor
Consider the quadratic  f(x) = 222 + 8z — 10.
a Find the axis of symmetry. b Find the coordinates of the vertex.
¢ Find the axes intercepts. d Hence, sketch the function.

e State the range of the function.

f(x) =222 +8r—10 has a=2, b=28, and c= —10.

a > 0, so the shape is \j

b -8

a %_ﬁ:_2 d w:§—2 Ay
The axis of symmetry is = = —2. < \ f R
b f(—2) =2(~2)% +8(—2) — 10 -5\ iolft =
= —18
The vertex is (—2, —18).
¢ The y-intercept is —10. -10
When y =0, 22248z —10=0
2(x? +4x —5) =0 :
2(x+5)(z—1)=0 (—2,-18)7 y
r=-5Horl
the z-intercepts are —5 and 1. e Therangeis {y:y> —18}

EXERCISE 3D.3

1 Locate the turning point or vertex for each of the following quadratic functions:

a f(z)=2%—4x+2 b y=22+2r-3 -

) ) The vertex lies on the
c y=2z"+4 d f(z)=-32"+1 axis of symmetry.
e y=2224+8x -7 f flz)=—-22>—-4z -9
g y=202+6z—1 h f(z)=22?—-10z+3

y:—%x2+x—5
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2 For each of the following quadratics:

i state the axis of symmetry il find the coordinates of the vertex
iii find the axes intercepts iv sketch the quadratic v state the range.
a y=22-8x+7 b y=—22—-6z—8 ¢ f(x) =6z — 2?
d y=-—22+32-2 e y=222+4+4r—24 f f(z)=-322+4x—1
g f(r)=22%—-5x+2 h y=422 -8z -5 i y=—122+2x-3

3 For each of the following quadratics:
i write the quadratic in factored form and hence find the roots

il write the quadratic in completed square form and hence find the coordinates of the vertex
iii sketch the quadratic, showing the details you have found.

a y=2>—10z + 16 b y=2?+10z+9 ¢ y=12>—14z+45
4 Sketch the graph of:

a y:|a:2+4x—12 b f(:v):|—x2—3:c+10 c y:|4a:2—12x+5{
Example 18 %) Self Tutor

Find the range of y = 22 — 6z —2 on the domain -2 <z < 7.

— 2 _ — = — = —
y=a"—6r—-2 has a=1,b 6, and ¢ 2 To find the range of a function on a

a0, so the shape is \/ given domain, you must evaluate the

function at the endpoints of the domain.

2a 2(1)
, (—2,14)
When z =3, y=232—6(3)—2

=-11
the vertex is (3, —11).

(7,5)
When z = -2, y=(-2)>—6(-2)—2 /
=14 = 0 "
When z=7, y=7>-6(7)—-2
=5
So, on the domain {z: -2 <z < 7},
the range is  {y: —11 <y < 14}. v (B.-11)

y=a2—6x—2

5 Find the range of:

a f(r)=2>+42-6 on —6<z<3 b y=—-2>+8+3 on 0<x<7
c y=222—-122+5 on —-2<z<6 d f(x)=7r—2> on —-1<x<5

Activity

Click on the icon to run a card game for quadratic functions. LR
A0

b
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THE DISCRIMINANT AND THE QUADRATIC GRAPH

The discriminant of the quadratic equation az? +bx+c=0 is A =b? — 4ac.

We used A to determine the number of real roots of the equation. If they exist, these roots correspond to

zeros of the quadratic y = ax? + bz +c. A therefore tells us about the relationship between a quadratic
function and the z-axis.

The graphs of y =22 22 +3, y=22—-2r+1, and y =222z —3 all have the same axis of
symmetry, = = 1.

Consider the following table:

y=x%—-2x+3 y=xz%—-2z+1 y=x°>—-2xr—3

A <O A=0 A>0
does not cut the x-axis touches the z-axis cuts the x-axis twice

For a quadratic function y = ax? + bx + ¢, we consider the discriminant A = b2 — 4ac.
If A <0, the graph does not cut the z-axis.

If A =0, the graph touches the x-axis.

If A >0, the graph cuts the xz-axis twice.

POSITIVE DEFINITE AND NEGATIVE DEFINITE QUADRATICS

Positive definite quadratics are quadratics which are positive for all
values of z. So, ax?+br+c>0 forall z€R.

\/4 The terms “positive definite”
and “negative definite” are

not needed for the syllabus.

£

Test: A quadratic is positive definite if and only if ¢ >0 and A < 0.

Negative definite quadratics are quadratics which are negative for all
values of z. So, ax?+br+c<0 forall z€R.

YN\

Test: A quadratic is negative definite if and only if o <0 and A < 0.

N
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Example 19 ) Self Tutor
Use the discriminant to determine the relationship between the graph of each function and the x-axis:
a y=122+3z+4 b y=-2z2+5x+1
aa=1 b=3, c=4 b a=-2, b=5 c=1
A =b% — dac o A=b*—dac
=9—4(1)4) =25—4(-2)(1)
=7 =33
Since A < 0, the graph does not cut the Since A > 0, the graph cuts the x-axis
x-axis. twice.
Since a > 0, the graph is concave up. Since a < 0, the graph is concave

\/ down.
-— 4%»3?

The graph is positive definite, which
means that it lies entirely above the z-axis.

EXERCISE 3D.4

1 Use the discriminant to determine the relationship between the graph and z-axis for:
a y=z22+2-2 b y=22—-4r+1 ¢ f(z)=-2%2-3
d f(z)=2%+T7x -2 e y=2>+8x+16 f flo)=-202+3z+1
g€ y=06z>+5x—4 h f(z)=—-2?+z2+6 i y=922+6x+1

2 Consider the graph of y =222 — 5z + 1.

a Describe the shape of the graph.
Use the discriminant to show that the graph cuts the x-axis twice.
Find the z-intercepts, rounding your answers to 2 decimal places.
State the y-intercept.

o & 0o T

Hence, sketch the function.

3 Consider the graph of f(z) = —2% +4x — 7.
a Use the discriminant to show that the graph does not cut the x-axis.
b Is the graph positive definite or negative definite?
¢ Find the vertex and y-intercept.
d Hence, sketch the function.

4 Show that:
a 22-3z+6>0 forallx b 4z —22-6<0 forallx
¢ 222 —4x +7 is positive definite d 222 +3z—4 is negative definite.

5 Explain why 3x2 +kxz — 1 is never positive definite for any value of k.

Under what conditions is  2z2 + kz + 2 positive definite?
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E _RATIC FROM ITS GRAPH

If we are given sufficient information on or about a graph, we can determine the quadratic function in

whatever form is required.

) Self Tutor

Example 20
Find the equation of the quadratic function with graph:
a v
3
—1 3

=k

SN

a Since the x-intercepts are —1 and 3,
y=a(zr+1)(x—3).

The graph is concave down, so a < 0.

When z=0, y=3
3=a(1)(-3)
a=—1

The quadratic function is

y=—(z+1)(z—3).

Example 21

N

\

b The graph touches the z-axis at © = 2,

so y=a(zx—2)>2%
The graph is concave up, so a > 0.
When z=0, y=38

8 =a(-2)?
a=2
The quadratic function is
y=2(z —2)%

w) Self Tutor

Find the equation of the quadratic function with graph:

The axis of symmetry =z =1 lies midway between the z-intercepts.

the other z-intercept is 4.

the quadratic has the form

y=a(z+2)(x—4) where a <0

But when =0, y=16
16 = a(2)(—4)
a= -2

The quadraticis y = —2(x + 2)(z — 4).
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EXERCISE 3E
1 Find the equation of the quadratic with graph:

x RYAR

Oll 2

! ‘/O \

2 Find the quadratic with graph:

. b . c
Y ir=3 | v
4 )
12 B —4ﬂ\\
) o

= 7~ % a

8y
<2
N}
]y
4
o
<
w
a2y

514

KY

]Y

]y

]y

Example 22 ) Self Tutor

Find the equation of the quadratic whose graph cuts the z-axis at 4 and —3, and which passes through
the point (2, —20). Give your answer in the form y = az? + bz + c.

Since the z-intercepts are 4 and —3, the quadratic has the form y = a(z —4)(z+3) where a # 0.
When z =2, y=-20

s —20=a(2—4)(2+3)
=20 =a(-2)(5)
Loa=2
The quadratic is y = 2(z — 4)(z + 3)
=2(x? —x —12)
=22" -2z —24

3 Find, in the form f(z) = ax® + bx + ¢, the equation of the quadratic whose graph:
a cuts the z-axis at 5 and 1, and passes through (2, —9)
b cuts the z-axis at 2 and —3, and passes through (3, —14)
¢ touches the z-axis at 3 and passes through (—2, —25)
d touches the z-axis at —2 and passes through (—1, 4)
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4 Find, in the form f(x) = ax?® + bx + ¢, the equation of the quadratic whose graph:
a cuts the z-axis at 3, passes through (5, 12), and has axis of symmetry x = 2

b cuts the z-axis at 5, passes through (2, 5), and has axis of symmetry z = 1.

Example 23 ) Self Tutor
Find the equation of each quadratic function given its graph:
b
? y V(—4, 2) y
16 = / —\o| =
0 \o/ g
a Since the vertex is (3, —2), the b Since the vertex is (—4, 2), the
quadratic has the form quadratic has the form
y=a(z—3)2—2 where a>0. y=a(z+4)>+2 where a<O0.
When z =0, y=16 When z=-2, y=0
16 = a(—3)? — 2 S 0=a(2)?*+2
16 =9a — 2 oo da=-2
18 =9a Sooa= —%
a=2 The quadratic is
The quadratic is y = 2(x — 3)% — 2. y=—-i(xz+4)?2+2.

5 If V is the vertex, find the equation of the quadratic function with graph:

a y b y ¢ y
V(2, 4) * ‘ V(3, 8)

~ 0 2 0o \‘/ 3 0 1/.\ 3

\ V(2, -1) /i/

d Ay e Y f Y

yes )

N e . X
0 >

]y
4

y
- o
=
K
[N
52 4
y
&%
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Discovery 3 Finding quadratic functions

For the quadratic function y = 222 + 32 + 7 we can find " ol1l213T4]5
a table of values for z =0, 1, 2, 3, 4, 5.

Y 71221 | 34|51 |72

We turn this table into a difference table by adding two

further rows: T o112 ]3] 4]|5

Y 71221 | 34|51 |72

e the row A; gives the differences between successive

y-values A 5 9 Eil 17 @Il
e the row A, gives the differences between successive Az 4 4 4
A;-values. T
9—5 34-21 72 — 51

What to do:
1 Construct difference tables for x =0, 1, 2, 3, 4, 5 for each of the following quadratic functions:
a y=22+4z+3 b y=32%—4x
¢ y=5x—a? d y=422 -5z +2
2 What do you notice about the A, row for each of the quadratic functions in 1?

3 Consider the general quadratic y = ax? +bx +c, a#0.
a Copy and complete the following difference table:

0 1 2 3 4 5
y |© a+b+c da+2b+c oo s
A O e e
Ay O s e

b Comment on the Ay row.
¢ What can the encircled numbers be used for?

4 Use your observations in 3 to determine, if possible, the quadratic functions with the following
tables of values:

a|lxz|0]|1]2]| 3|4 b |z|0]| 1] 2|3]4
y| 6|58 15| 26 y | 8|10 | 18 | 32 | 52
c |z |01 2 3 4 d|[z|0|1][ 2 3 4
y|1]2]—-1|-8]—-19 y|5|3|-1|-7|-15
5 We wish to determine the maximum number of pieces into which a pizza can be cut using n cuts
across it.
For example, for n =1 we have which has 2 pieces

for n =3 we have M which has 7 pieces.
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a Copy and complete:

Number of cuts, n 0112345

Maximum number of pieces, P,

b Complete the A; and Ay rows. Hence determine a quadratic formula for P,.
¢ For a huge pizza with 12 cuts across it, find the maximum number of pieces which can result.

\WHERE FUNCTIONS MEET

Consider the graphs of a quadratic function and a linear function on the same set of axes.

Notice that we could have:

AF AL NS

cutting touching missing
(2 points of intersection) (1 point of intersection) (no points of intersection)

If the graphs meet, the coordinates of the points of intersection of the graphs can be found by solving the
two equations simultaneously.

Example 24 ) Self Tutor

Find the coordinates of the points of intersection of the graphs with equations
y=22—2—18 and y=2x2—3.

y=22—x—18 meets y=x—3 where

2’ —r—-18=2-3
22 — 22 —15=0 {RHS =0}
(x—=5)(x+3)=0 {factorising}
. x=>50r—3
Substituting into y =x —3, when =5, y=2 and when =z = -3, y= —6.
the graphs meet at (5, 2) and (—3, —6).

EXERCISE 3F
1 Find the coordinates of the point(s) of intersection of:
a y=22-2x+8 and y=x+6 b f(z)=-2?+3z+9 and g(z) =22 -3
c y=22—4r+3 and y=2r-6 d f(z)=-2>+42—7 and g(x) =5z —4
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Example 25 ) Self Tutor

y=2x+k isatangentto y=2z?>—3z+4. Find k.

5 A line which is a tangent to a
y=2x+k meets y=2z"—3x+4 where quadratic will touch the curve.
20 -3z +4=2z+k
22° —b5x+ (4—k)=0

Since the graphs touch, this quadratic has A =0

(=5)? — 424~ k) =

25— 8(4—k) =
256 -32+8k=0
8k =17
k=1

8

2 For which value of ¢ is the line y = 3z 4+ ¢ a tangent to the parabola with equation
y=x%— 5z +7?

3 Find the values of m for which the lines y = max — 2 are tangents to the curve with equation
y=x%—4x +2.

4 Find the gradients of the lines with y-intercept 1 that are tangents to the curve f(z) = 322 + 5z + 4.

5 a For what values of ¢ do the lines y =2 4+ ¢ never meet the parabola with equation
y=2x?—3x—T7?
b Choose one of the values of ¢ found in part a above. Illustrate with a sketch that these graphs

never meet.

6 Consider the curve y = 2?+4x—1 and the line i DEMO
y = 2z + ¢. Find the value(s) of ¢ for which the ‘
line: . y=2+c :F“

a meets the curve twice » |

b is a tangent to the curve

¢ does not meet the curve. c

y=z+4x —
v
7 Consider the curve f(z) = —2? +3z — 6 and Ly ) DEMO
=mx —

the line g(z) = ma — 2. Find the values of m - O e 7Y
for which the line: SO,

a meets the curve twice \ K

b is a tangent to the curve

¢ does not meet the curve. )
y=—x"+ 3z —
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8 b f(z) Show that any linear function passing through P(0, 3)
will meet the curve f(z) =222 —x —2 twice.

flz)=22%—2—2

4
o
<Y

"5 |PROBLEM SOLVING WITH QUADRATICS

Some real world problems can be solved using a quadratic equation. We are generally only interested in any
real solutions which result.

Any answer we obtain must be checked to see if it is reasonable. For example:
e if we are finding a length then it must be positive and we reject any negative solutions

e if we are finding ‘how many people are present’ then clearly the answer must be a positive integer.

We employ the following general problem solving method:

Step I: If the information is given in words, translate it into algebra using a variable such as x for the
unknown. Write down the resulting equation. Be sure to define what the variable = represents,
and include units if appropriate.

Step 2:  Solve the equation by a suitable method.
Step 3:  Examine the solutions carefully to see if they are acceptable.

Step 4:  Give your answer in a sentence.

Example 26 ) Self Tutor

A rectangle has length 3 ¢cm longer than its width. Its area is 42 cm?. Find its width.

If the width is 2 cm then the length is (z 4 3) cm.

x(z +3) =42 {equating areas} zem
2’ +3z—-42=0
- fSi\/m (z+3)cm
2
Lo 3% V177
2

r~ —8.15 or 5.15
We reject the negative solution as lengths are positive.

The width is about 5.15 cm.

EXERCISE 3G
1 Two integers differ by 12 and the sum of their squares is 74. Find the integers.

2 The sum of a number and its reciprocal is 2—5?. Find the number.
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3 The sum of a natural number and its square is 210. Find the number.

4 The product of two consecutive even numbers is 360. Find the numbers.

5 The number of diagonals of an n-sided polygon is given by the formula D = %(n - 3).
A polygon has 90 diagonals. How many sides does it have?

The length of a rectangle is 4 cm longer than its width. The rectangle has area 26 cm?. Find its width.

7 A rectangular box has a square base with sides of length x cm. Its height
is 1 cm longer than its base side length. The total surface area of the box
is 240 cm?.

a Show that the total surface area is given by A = 622 + 4z cm?. ------- Heeeess

b Find the dimensions of the box. T em
8 An open box can hold 80 cm?®. It is made from a square piece
of tinplate with 3 cm squares cut from each of its 4 corners.
Find the dimensions of the original piece of tinplate.
I 3cm
Example 27 «) Self Tutor

Is it possible to bend a 12 cm length of wire to form the perpendicular sides of a right angled triangle
with area 20 ¢cm??

Suppose the wire is bent x cm from one end.
The area A = 32(12 — )

%x(l? —x) =20  area20 cm?

x(12 —xz) =40 gem  (12—z)cm becomes zem
120 — 22 —40=0 | 12 em ‘

22— 122 +40=0

Now A = (—12)? — 4(1)(40)
= —16 whichis <0

(12—2) cm

There are no real solutions, indicating this situation is impossible.

9 Is it possible to bend a 20 cm length of wire into the shape of a rectangle which has an area of 30 cm??

10 The rectangle ABCD is divided into a square and a smaller

A Y B
rectangle by [XY] which is parallel to its shorter sides. ‘
The smaller rectangle BCXY is similar to the original rectangle,
so rectangle ABCD is a golden rectangle.
The ratio AB is called the golden ratio.
AD D X C

Show that the golden ratio is ! +2\/5.

Hint: Let AB = z units and AD = 1 unit.
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11 A truck carrying a wide load needs to pass through the parabolic A
tunnel shown. The units are metres. S .
The truck is 5 m high and 4 m wide. 8
a Find the quadratic function which describes the shape of the
tunnel.
b Determine whether the truck will fit.
3 o] 3 7
12 Answer the Opening Problem on page 64.
The process of finding the maximum or minimum value of a function is called optimisation.
For the quadratic function y = ax? +bx + ¢, we have already seen that the vertex has
x-coordinate —i.
2a
e If a >0, the minimum value of y occurs at = = —21.
a
e If a <0, the maximum value of y occurs at z = —i.
a
Example 28 ) Self Tutor

Find the maximum or minimum value of the following quadratic functions, and the corresponding

value of z:
a y=224+2-3

a y=2>4+2x—-3 has
a=1, b=1, and ¢= —-3.

Since a > 0, the shape is \/

The minimum value occurs

N=

—b
when z=— = —
2a

and y=(—3)>+(-3)-3=-3%
So, the minimum value of y is 73%,
1

occurring when z = —3.

b y=3+3z— 222

b y=-2¢2+3x+3 has

a=-2, b=3, and ¢c=3.

Since a < 0, the shape is /\

The maximum value occurs
when z = b3 %
2a —4
and y=—-2(3)2+3(3)+3= 44

So, the maximum value of y is 41,

occurring when z = 3.
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EXERCISE 3H
1 Find the maximum or minimum values of the following quadratic functions, and the corresponding
values of z:
a y=22-22 b f(z)=7-2r—22 ¢ y=28+2z — 322
d f(z)=22>+z—-1 e y=4r2 -~z +5 f f(z) =Tz — 222

2 The profit in manufacturing = refrigerators per day, is given by the profit relation
P = —32% 4 240z — 800 dollars.

a How many refrigerators should be made each day to maximise the total profit?
b What is the maximum profit?

Example 29 ) Self Tutor

A gardener has 40 m of fencing to enclose a
rectangular garden plot, where one side is an
existing brick wall. Suppose the two new equal
sides are x m long.

a Show that the area enclosed is given by brick wall

A = z(40 — 27) m?.
b Find the dimensions of the garden of maximum ‘
area. zm

a Side [XY] has length (40 — 2x) m.
Now, area = length x width
A = 2(40 — 2x) m?
b A=0 when z =0 or 20.

The vertex of the function lies midway
between these values, so = = 10.

Since a <0, the shape is /\ Y zm Z

the area is maximised when YZ = 10 m and XY = 20 m.

3 A rectangular plot is enclosed by 200 m of fencing and has an area
of A square metres. Show that:

a A =100z — 2% where z m is the length of one of its sides T +axm
b the area is maximised if the rectangle is a square.

4 Three sides of a rectangular paddock are to be fenced, the fourth side being an existing straight water
drain. If 1000 m of fencing is available, what dimensions should be used for the paddock so that it
encloses the maximum possible area?
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5 1800 m of fencing is available to fence six identical pens le——ym—
as shown in the diagram.

a Explain why 9z + 8y = 1800.
b Show that the area of each pen is given by i
A= —222 + 2250 m?, -

rm
c If the area enclosed is to be maximised, what are the B
dimensions of each pen? f
6 500 m of fencing is available a b
to make 4 rectangular pens
of identical shape. Find the
dimensions that maximise the area
of each pen if the plan is:
7 Ay The graphs of y = 2?2 — 3z and y = 2z — 2? are
y=2%—3x illustrated.
o a Show that the graphs meet where © =0 and z = 2%.
- D) 3 > b Find the maximum vertical separation between the
curves for 0 <z < 24,
y=2x — x>

8 Infinitely many rectangles may be inscribed within the
right angled triangle shown alongside. One of them is
illustrated.

a Let AB=2xzcm and BC =y cm.
Use similar triangles to find y in terms of x.

b Find the dimensions of rectangle ABCD of maximum
area.

Discovery 4 Sum and product of roots

What to do:
1 Suppose az?+bxr+c=0 hasrootsp and q.
Prove that p+q = %b and pg = E
2 Suppose 2x? —5r+1=0 hasroots p and q.
Without finding the values of p and g, find:
a ptgq b pq c p?+q? d

S
Q| =

3 Find a// quadratic equations with roots which are:

a one more than the roots of 222 —5x+1=0
b the squares of the roots of 2x2 — 5z +1=0

¢ the reciprocals of the roots of 2z% — 5z +1 = 0.
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Review set 3A

1 Consider the quadratic function f(z) = —2(z +2)(x — 1).

a State the x-intercepts. b State the equation of the axis of symmetry.
¢ Find the y-intercept. d Find the coordinates of the vertex.
e Sketch the function. f State the range of the function.

2 Solve the following equations, giving exact answers:
a 322 -12x =0 b 322-2-10=0 ¢ z22-112 =60

3 Solve using the quadratic formula:
a z2+5x+3=0 b 322 +11z—-2=0

4 Solve for x:
a 22—4r—-21<0 b 322—-2>5z

5 Use the vertex, axis of symmetry, and y-intercept to graph:
a y=(x—2)2-4 b y=-1(z+4)2+6

6 Find, in the form y = ax? + bx + ¢, the equation of the quadratic whose graph:
a touches the z-axis at 4 and passes through (2, 12)
b has vertex (—4, 1) and passes through (1, 11).

7 Find the maximum or minimum value of the relation f(z) = —22% + 42 +3 and the value of
x at which this occurs.

8 Find the points of intersection of y =22 — 32z and y = 32? — 5z — 24.
9 For what values of k does the graph of y = —2x? + 52 + k not cut the z-axis?

10 Find the values of m for which 222 —3z +m =0 has:
a a repeated root b two distinct real roots ¢ no real roots.

11 The sum of a number and its reciprocal is 23—10. Find the number.

12 Show that no line with a y-intercept of (0, 10) will ever be tangential to the curve with equation
y =322+ Tz — 2.

13 a Write the quadratic y = 222 + 4z —3 in the form y = a(z — h)? + k.
b Hence, sketch the graph of the quadratic.
14 Find the equation of the quadratic function with graph:

a y b Y : c

0 5 T T : \?;
(2,—20) ot

15 Find the range of y =22 — 62 —4 on the domain —1 <z < 8.

Y
EN|
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16 When Annie hits a softball, the height of the ball
above the ground after ¢ seconds is given by
f(t) = —4.9t? +19.6t + 1.4 metres. Find the maximum
height reached by the ball.

Review set 3B

1 Consider the quadratic function y = %(z —2)? —4.
a State the equation of the axis of symmetry. b Find the coordinates of the vertex.
¢ Find the y-intercept. d Sketch the function.
e State the range of the function.
2 Solve the following equations:
a z2-52—-3=0 b 222 -7r—-3=0
3 Solve for z:

a 2+52<14 b 222+ 7z > 2(x+6)

4 Consider the quadratic function f(z) = —32%+8z+7. Find the equation of the axis of symmetry,
and the coordinates of the vertex.

5 Use the discriminant only to find the relationship between the graph and the z-axis for:

a y=2r2+3zx-7 b y=-322-7Tx+4

6 Determine whether each quadratic function is positive definite, negative definite, or neither:
a y=-222+3z+2 b f(z)=3z>+z+11

7 Find the equation of the quadratic function with vertex (2, 25) and y-intercept 1.
8 For what values of m does the line y = ma — 10 meet the curve y = 322+ 7z +2 twice?

9 Consider the quadratic function y = 222 + 42 — 1.
a State the axis of symmetry. b Find the coordinates of the vertex.

¢ Find the axes intercepts. d Hence sketch the function.
10 Find the range of y = —222 +6x+1 onthe domain —4 <z < 5.

11 Find the values of k for which kxz? + kx —2 has:
a a repeated root b two distinct real roots ¢ no real roots.

12 a For what values of ¢ do the lines with equations y = 3x + ¢ intersect the parabola
y=2x>+2—5 intwo distinct points?
b Choose one such value of ¢ from part @ and find the points of intersection in this case.
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13 a Find the equation of the quadratic function illustrated. Ay
b Find the vertex of the quadratic. 2
- 9 1 -
- 5 >
A
14 Find the maximum or minimum value of the quadratic, and the corresponding value of z:
a y=3r2+4z+7 b y=—-222—-5z+2
15 600 m of fencing is used to construct 6 rectangular animal pens rm
as shown. .
600 — 8z TY™
a Show that the area A of each penis A =2 ( ) m?2,
b Find the dimensions of each pen so that it has the maximum
possible area.
¢ What is the area of each pen in this case?
16 Sketch the graph of f(z) = |22 + 2 — 20|



Surds, indices,
and exponentials

Contents:

TOOMMmMOUN®D>

Surds

Indices

Index laws

Rational indices

Algebraic expansion and factorisation
Exponential equations

Exponential functions

The natural exponential e”



102 Surds, indices, and exponentials (Chapter 4)

Opening problem

The interior of a freezer has temperature —10°C. When a packet of peas is placed in the freezer, its
temperature after ¢+ minutes is given by 7T'(t) = —10 + 32 x 2792t °C,

Things to think about:
a What was the temperature of the packet of peas:
i when it was first placed in the freezer ii after 5 minutes
iii after 10 minutes iv after 15 minutes?
b What does the graph of temperature over time look like?

¢ According to this model, will the temperature of the packet of peas ever reach —10°C? Explain
your answer.

We often deal with numbers that are repeatedly multiplied together. Mathematicians use indices, also called
powers or exponents, to construct such expressions.

Indices have many applications in the areas of finance, engineering, physics, electronics, biology, and
computer science.

| surDs

A radical is any number which is written with the radical sign . /—.

A surd is a real, irrational radical such as /2, v/3, v/5, or v/6. Surds are present in solutions to some
quadratic equations. +/4 is a radical, but is not a surd as it simplifies to 2.

\v/a is the non-negative number such that +/a X v/a = a.
Important properties of surds are:

e ./a is never negative, so /a > 0.
Va is only real if a > 0.
\/a_:\/Ex\/l_) for a >0 and b > 0.

°
° %:% for a >0 and b > 0.
Example 1 o) Self Tutor
Write as a single surd: a v/2x+3 b %
a V2x\3 bl
= x 3
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EXERCISE 4A.1

1 Write as a single surd or rational number:

a V11 x V11
e 22 x 2
V12

V2

b
f

Example 2

V3 x5 c (V3)? d V5x6
3v/2 x 22 g 3VTx2VT h (3V5)2
VI8 Kk V20 I V6 x V10
V3 V5 V12
) Self Tutor

Write /18 in the form av/b where a and b are integers and a is as large as possible.

V18
=419 x 2
=V9x V2
=32

{9 is the largest perfect square factor of 18}

2 Write in the form av/b where a and b are integers and a is as large as possible:

a /8 b
e V27 f
i V50 j

OPERATING WITH SURDS

V12 c V20 d /32
V45 g V&8 h 54
V80 k 96 1 108

The rules for adding, subtracting, and multiplying by surds are the same as those for ordinary algebra.

Example 3 <) Self Tutor 1y o i)
Simplify: a 3v/3+5V3 b 2v2-52
a 3V/3+5V3 b 2v2-5V2
=8V3 =32
Example 4 ) Self Tutor
Simplify:
a V5(6—/5) b (6++v3)(1+2V3)
a V5(6-V5) b (6+V3)(1+2V3)
=V5x64+vV5x V5 =6+ 6(2Vv3) + V3(1) + V3(2V3)
=6v5-5 =6+12v34+V3+6

=12+13V3
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EXERCISE 4A.2
1 Simplify:
a 2v2+3V2 b 2V2-3V2 c 5vV5-3V5 d 5/5+3V5
e 3v5-5V5 f 7V3+2/3 g€ 9v6—12V6 h V2+V2+V2
2 Simplify:
a V2(3-V2) b V5(v5+1) ¢ V10(3 +2V10) d V7(3V7—4)
e —V3(5+V3) f 2V6(V6—17) g —V8(v8-5) h —3v2(4-6v2)
3 Simplify:
a 5+v2)(4+V2) b (7+2V3)(4+3) c (9-VT)(4+2V7)
d (V3+1)(2-3V3) e (VB-6)(2v/8-3) f (2V5-7)(1-4V5)
Example 5 ») Self Tutor
Simplify:
a (5-v2) b (7+2v5)(7-2V5)
a (5—V2)? b (7+42V5)(7—-2V5)
=52 +2(5)(-Vv2) + (vV2)? =72 — (2V/5)?
=25 —10v2+2 =49 — (4 x 5)
=27 —10V2 =29
4 Simplify:
a (3++2)? b (6—+/3)2 c (V5+1)? d (V8-3)?
e (4+2V3)? f (3v5+1)2 g (7-2/10)2 h (5v6—4)2
5 Simplify:
a 3+V7)(3-VT) b (VZ+5)(vV2-5) c (4—V3)(4+V3)
d (2v2+1)(2v2-1) e (4+3V8)(4—3VB) f (9v3—5)(9vV3+5)

DIVISION BY SURDS

Numbers like 5 and

9
V2 542

It is customary to ‘simplify’ these numbers by rewriting them without the surd in the denominator.

involve dividing by a surd.

For any fraction of the form we can remove the surd from the denominator by multiplying by

<%

b
\/E’
va g

Since a = this does not change the value of the fraction.
a
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Example 6 %) Self Tutor
Write with an integer denominator: Multiplying the original
6 35 V5 Vi
a > b =22 number by — or —
V5 Vi Vi
does not change its value.
6 35 N
a — b —
V5 V7
L6 B I
Vs VB VToVT
o i
5 4
=5V7
For any fraction of the form —° ., we can remove the surd
a+vb
. o a—b
from the denominator by multiplying by T

Expressions such as a++v/b and a —+/b are known as radical conjugates. They are identical except for
the sign in the middle.

The product of radical conjugates is rational, since we have the difference between two squares. Multiplying
by a— Vb

therefore produces a rational denominator, so it is sometimes called rationalising the

a—b
denominator.
Example 7 ) Self Tutor
. 5 . . . The radical conjugate of
Write P with an integer denominator. 3.2 is 342
5 5 3+2
3-v2  \3-+v2) \3++2
_ 5B+Vv2)
32 — (v2)?
_ 1545V2
7
EXERCISE 4A.3
1 Write with integer denominator:
1 3 9 11 V2
G " MG “ ® 5
2 6 12 . V3 |
f — — h — X2 -
Vi G Vi ' v



106 Surds, indices, and exponentials (Chapter 4)

2 Write with integer denominator:

i b E c __3 d @ e L
V5 NG V5 V5 35
7 21 2 26 1
f — = h — i — j
v & 7 Vit ' Un i
3 Rationalise the denominator:
1 2 1 V2
b [ d
® v 52 PTG 2-v2
10 V3 1++2 V3
f h
¢ % N i 1=V
i —2v2 j 1++/5 K V342 I V10— 7
1-2 2-5 V3-1 V10 + 4
Example 8 u) Self Tutor
Write 5+1 7 in the form a + bv/2 where a, b € Q.
1 1 y 5—+/2
54v2  \5+2 5—2
_5-v2
T 252
5—+/2
23
— 5 - V2
4 Write in the form a + bv/2 where a, beqQ:
3 b 4 c V2 d —2v/2
V2-3 2442 V25 V241
5 Write in the form a + bv/3 where a, b € Q:
4 6 3 1423
S b —— d
a 1-+/3 V3+2 ¢ 2-13 3+4/3

6 a Suppose a, b, and c are integers, ¢ > 0. Show that (a+ b\/c)(a —by/c) is also an integer.

b Write with an integer denominator:
1 & V2

i V2-1
1+2v3 3v2 -5

3—2v2

7 a Suppose a and b are positive integers. Show that (/a4 v/b)(v/a — v/b) is also an integer.

b Write with an integer denominator:

! i3 i Y-V
V2++/3 V3—+/5 V114 /14

8 Solve the equation 2z — 3v/3=1-1x2v3. Give your solution in the form z = a + bv/3, where

a and b are integers.

9 Find the positive solution of the equation (9 + v/5)z% + (5 — 2¢/5)x — 5 = 0. Give your answer in

the form a + bv/5, where a, b € Q.



Surds, indices, and exponentials (Chapter 4) 107
If n is a positive integer, then a™ is the product of n factors of a. power,
<— index or
a® =aXaXaXxXaX ... X a base v exponent
n factors
We say that a is the base, and n is the index or exponent.
NEGATIVE BASES
(-t =-1 (-2)! = -2
(-1)?=-1x-1=1 (-2)P=-2x-2=4
(1)} =—-1x-1x-1=-1 (-2 =-2x —2x-2=-8
(-1)f=—-1x-1x—-1x-1=1 (—2) = —2x —2x —2x -2=16
From the patterns above we can see that:
A negative base raised to an odd index is negative.
A negative base raised to an even index is positive.
EXERCISE 4B
1 List the first six powers of:
a 2 b 3 c 4
2 Copy and complete the values of these common powers:
a 5l=.., B2=..., 53=..., 5t=..
b 6l=..., 62=..., 62=...., 6*=..
c T'=..., ’=.., B=.., T"=..
3 Simplify, then use a calculator to check your answer:
a (—1)° b (—1)° c (-1 d (—1)¥ e (—1)8 f 18
g —(-1° h (-2 - J (2% Kk (-5)f I —(-5)"
4 Use your calculator to find the value of:
a 47 b 7 c —5° d (-5)5 e 8 f (—8)¢
g 8 h 2.13° i —2.13° i (—2.13)°
5 Use your calculator to find the values of:
1 1 _9 1 4 1
a9 b of c 6 d = e 3 f v
g 17 h (0.366)°
What do you notice?
6 Consider 3!, 32,33, 3% 3% ... Look for a pattern and hence find the last digit of 3'°!.

7 What is the last digit of 72172
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Historical note

Nicomachus discovered an interesting number pattern involving cubes 1l=1®
and sums of odd numbers. 34+5=8=293
Nicomachus was born in Roman Syria (now Jerash, Jordan) around T+94+11=27=33

100 AD. He wrote in Greek, and was a Pythagorean, which means he
followed the teaching of Pythagoras.

" INDEX LAWS

The index laws for m, n € Z are:

a™ x a® = a™mt" To multiply numbers with the same base, keep the base
and add the indices.

— =a™"", a#0 To divide numbers with the same base, keep the base and
“ subtract the indices.
(a™)™ = a™>"™ When raising a power to a power, keep the base and
multiply the indices.
(ab)™ = a™b™ The power of a product is the product of the powers.
n n
<%) = Z_"’ b#0 The power of a quotient is the quotient of the powers.
a®=1, a#0 Any non-zero number raised to the power of zero is 1.
o 1 1 n . : 11
a " =— and —— = a"™ andin particular a=* ==, a #O0.
@ a— " a
Example 9 ) Self Tutor
Simplify using the index laws:
3
5 94 5 43
a 3°x3 b c (m*)
5, od 5 4\3
a 3x3 b = c (m")
55
= 35+4 _ 53_5 — m4><3
=39 _ 52 — m2
-1
25
EXERCISE 4C
1 Simplify using the index laws:
K8 7 5 4
4, E7 2 ., 6 2 4
a 5'x5 b d?xd c 3 d 5 e (z?) f (3%
g 2 h n® xn’ i (59)° j X7 Kk ()™
P’ 104
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Example 10 ) Self Tutor
Write as powers of 2:
a 16 b L c 1 d 4x2n e L
8
a 16 b c 1 d 4x2" e
=2X2x2x2 1 =20 =27 x 2" om
= 24 o 24 = 22+n - 2_3
= 2_4 2771,—3
2 Write as powers of 2:
a 4 b 1 c 8 d 32 f -
g 2 1 i 64 i & k 128 I o5
3 Write as powers of 3:
a9 b 3 c 27 d - 3 f 3
1 . 1
g 81 h & i1 J 243 =
4 Write as a single power of 2:
a 2x2° b 4x2° c 8x2t d (22+1)2 e (21—t
2¢ 2m 4 .2zl . 4T
f < g — h = I — I 7=
5 Write as a single power of 3:
a 9x3r b 27¢ c 3x9" d 27 x 34 e 9x27
3Y 3 9 .9 . ontl
f 3 g 3y h o7t ! 31—a ] 32n—1
Example 11 ) Self Tutor

Write in simplest form, without brackets:

a (-3a%)° b (—%)3

3
2
a (-3a%)" b <—2%>
= (3" x (a2)*
=81 x a*** b3

= 8148 —8a0
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6 Write without brackets:

a (2a)2 b (3b)3 ¢ (ab)* d (pg)? e (%)2

O I ) BN 5 B ) N N ¢ )

7 Write the following in simplest form, without brackets:

a (—2a)? b (—6b%)2 ¢ (—2a)3 d (—3m?n?)3
3 2 2
i —242 —4a —3p?
o Coar Y () e (2
(2z2y)? . (4a2b)3 K (—5a%b3)2 I (—22Ty%)3
T 2ab? 568 4x3y15
Example 12 ) Self Tutor
. . . a—3b?
Write without negative exponents: =
C
_3 1 I |
a = E and C__l =cC
a=3p2 - b2c
1 @
8 Write without negative exponents:
-2 -2 —1)2 —2712 a?b~!
a ab b (ab) c (2ab7 1) d (3a—*b) e —
a?p~! 1 a2 . 207! . 12a
= g = h b I o=
Example 13 ) Self Tutor
Write ! in non-fractional form.
921—n
I _9-(1-n)
2l—n
_ 271+1’L
o 2n71
9 Write in non-fractional form:
1 1 1 a™ a” "™
- b — d 2 a
a am p—n < 32—n p—m e a2+n
10 Simplify, giving your answers in simplest rational form:
510 7\ —1 1y -1 33
a (3) b (7) ¢ (3) d 5

e ()77 f 2l 42! g (12)7° h 52+5' +57
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11 Write as powers of 2, 3 and/or 5:

1 1 1 3

a j b C o5 d 3
k

4 2¢ 9 6P

e == f —_ h —

27 ) g 10 5

12 Read about Nicomachus’ pattern on page 108 and find the series of odd numbers for:
a 53 b 7 c 123

/| [RATIONAL INDICES

The index laws used previously can also be applied to rational indices, or indices which are written as a
fraction.

The notation a™ is defined to mean “a multiplied together n times”. Since we cannot multiply a together
1

“half a time”, the notation a? is an extension of the meaning of this notation. The goal is to extend the
meaning of a™ so that the fundamental law

an am — an+m
remains true. If we assume that a > 0 then this law holds for rational indices.

3

Since x° = —8 has x = —2 as a solution, we would like to write

3
3

r=af = (@) = (-8)F = () = (-9F = 2

Under some circumstances it is therefore possible to extend the meaning of a™ when n is rational and a < 0.
However, this is not generally so easy, and so for this course we restrict ourselves to cases where a > 0.

1 1 1 1
. L i L .
For a >0, notice that a2 x a® =a? 2 =a' =a {index laws}
and /a X y/a=a also
i

So, a% =+ {by direct comparison}

1 1 S
Likewise a® x a® x a® =a' =a

and ax Jax Ja

1
3

suggests a® = a
2
In general, a = Y/a  where {/a reads ‘the nth root of a’, for n € Z™.

We can now determine that vam

= (@)

m
n

1
n

=a

m

a® = Yam™ for a>0, necZt, meZ
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Example 14 %) Self Tutor
Write as a single power of 2:
1
V2 b — V4
a 2 = c 4
a V2 b L c V4
" ; a
=23 1 = (2%)°
2% _ 923
1 2
=9 2 =925
EXERCISE 4D
1 Write as a single power of 2:
1 1
a V2 b 7 c 2V2 d 42 e 5
4 1 1
f 2x /2 — h 2)3 i —
x V2 g % (V2) o i =
2 Write as a single power of 3:
1 1
V3 b — V3 d 3v3 —
a 3 7 c V3 V3 e - =
3 Write the following in the form a” where a is a prime number and x is rational:
a 7 b /27 c V16 d V32 e V419
1 1 1 1 1
1 1 h . .
7 & V27 /16 ' T ! V19
4 Use your calculator to evaluate:
3 7 1
a 31 b 28 c 23 d 45 e V8
1
f V27 —
V21 g =
Example 15 %) Self Tutor
Without using a calculator, write in simplest rational form:
4 2
a 83 b 27 3
4 2
a 83 b 27 3
4 _2
= (2°)° =(3°)F
3X = {(am)n :amn} :33><7§
=924 =372
16 1
9
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5 Without using a calculator, write in simplest rational form:

a 4% b 82 c 16% d 25% e 32§

f 4_% g 9_% h 8_§ i 27_§ i 125_§
3| |[ALGEBRAIC EXPANSION AND FACTORISATION
EXPANSION

We can use the usual expansion laws to simplify expressions containing indices:

a(b+c) =ab+ ac
(a+b)(c+ d) = ac+ ad + be + bd
(a+b)(a—0b) =a® —b?

(a—i—b)2:¢12—|—2¢1b—|—b2

(a — b)? = a®? — 2ab + b?

Example 16 «) Self Tutor

1 3 1 1
Expand and simplify: = 2(z2 + 222 — 3z 2)

1 3 1

1
=x 2 Xx24+x 2 X2x2

1
—x 2x3r 2 {eachtermis x byxz 2}

=a' 4+ 22° - 327! {adding exponents}
:1:+2—E
€T
Example 17 ») Self Tutor
Expand and simplify:
a (2°+3)(2*+1) b (7°+777)2
a (2 +3)(2" +1) b (77 +777)?
= 2% x 2% 427 £ 3 x 2% 43 = (T +2x T x T4+ (7T77)2
=2 44 %27 +3 =T 4+2x 7047
:4w+22+m+3 :72m+2+7—2x
EXERCISE 4E.1
1 Expand and simplify:
1 1 1
a 2323 +222+1) b 27(2% +1) c r2(x2+x 2)
1 3 1 1
d 7(7"+2) e 3°(2-377) f 22(x2 +22°2 +3z 2)

g 277(2% +5) h 52(5% +57) iz



114

Surds, indices, and exponentials

(Chapter 4)

2 Expand and simplify:
a (2*-1)(2*+3)
d (27 +3)?

3 Expand and simplify:

1

a (28 +2)? —2)

212

(3" +2)(3* +5)
(3~ 1"

(2% + 3)(2* — 3)
(7;1: _ 7—95)2

FACTORISATION AND SIMPLIFICATION

Example 18

c (5% —2)(5¢ —4)
f (47 4+ 7)2

) Self Tutor

Factorise: a 2713 427

a 2n+3 +2n
=2(2% +1)
=2"x9

Example 19

b 273 4+8

b 2n+3 T 8
=2"2° 138
=8(2") + 8
=8(2"+1)

c 23n + 22n

c 23n 4 22n
_ 22n2n + 22n
=22"(2" +1)

o) Self Tutor

Factorise: a 4% —9

a 4* —9

b 9 +4(3%) +4

— (2I)2 _ 32

= (2" +3)(2* - 3)
b 97 +4(3%) +4

= (3")2+4(3") +4  {compare a® + 4a + 4}

{compare a? —b*> = (a+b)(a —b)}

= (3% +2)? {as @*+4a+4=(a+2)?}
EXERCISE 4E.2
1 Factorise:
a 527 457 b 3t2 437 c T4 T8
d 5"l —5 e 6"2—¢ f 4nt2 _ 16
2 Factorise:
a 9*—4 b 4 —25 c 16 —9*
d 25 -4~ e 9% — 4~ f 47 +6(2°)+9

g 97 +10(3%) + 25 h 47 — 14(27) + 49 i 257 —4(5%) + 4
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3 Factorise:

a 4* +9(2%)+ 18 b 4 —2% —20 c 9 +9(3%)+ 14
d 9°+4(3*) -5 e 25% +5% —2 49° — 72l 412
Example 20 ) Self Tutor
Simplify:
a i b A
e 64
a i or 5 b & or il
3n 3n 6™ 6™
_ 2”,3% _ (B6\" 27omn _ (4"
lgﬂ (3) 3N (6)
= =(3)
4 Simplify:
n a b n
a 12 b 2 ¢ & o
67 20 2b 207
x a n+1 n+1
35 § o g o 5
7T 8a 5m 5
Example 21 *) Self Tutor
Simplify:
3n 4 gn 2m+2 _om 2m+3 4 om
gye e 9
n n m+2 _ om m+3 m
a 3" 46 2 2 ¢ 2 + 2
3n 2m 9
_ 3n 4 ongn B 2m22 _om _ 2m23 4 om
3n - om - 9
_Fa+2m) 24 —1) 2™ (B 4TT
1*3}{ 1% 1g
=1+2" =3 =2"
5 Simplify:
a 67 2™ 21 L 12™ 8™ L 4M
2m 2n n
d 127 — 3% 67 + 12" sntl _5n
3z 1+27 4
5n+1 —_ 5" qn _ on . on _ 2?’7,71
g 5m 2n ! n
6 Simplify:

a 2(n+1)+2"(n—1)

b 3 (12) o (22
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An exponential equation is an equation in which the unknown occurs as part of the index or exponent.

For example: 2% =8

There are a number of methods we can use to solve exponential equations.
These include graphing, using technology, and by using logarithms, which

we will study in Chapter 5. However, in some cases we can solve

algebraically.

If the base numbers are the same, we can equate indices.
then = = k.

If a* =aF

For example, if 2% =8

only solution.

then 2® =23, Thus xz =3, and this is the

and 30 x 3” =7 are both exponential equations.

Remember that
a > 0.

EXGMP’e 22 *))) Self Tutor Once we have the
. same base we then
Solve for x: equate the indices.
a 2°=16 b 37+ =
a 2% — 16 b 3712 =
2° =2* 3012 = 3-3
=4 r+2=-3
T =5
Example 23 ) Self Tutor
Solve for z:
a 4 =8 b 9o 2=1
a 47 = 8 b 9" =3
(22)32 _ 23 (32)272 — 3*1
2r __ o3
27 =2 32(z—2) _ g1
2r =3
3 2(r—-2)=-1
2
20 —4=-1
20 =
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EXERCISE 4F
1 Solve for x:
a 2"=38 b 57 =25 c 3* =281 d =1
e =1 f 2" =2 g 5° =1 h 4ot =64
i 2072 = 3—12 j 3tl= % k 7t =343 I 5172 = %
2 Solve for z:
T __ T __ rz _ 1 r
a 8 =32 b4_§ c 9" =5 d25_%
e 21" =3} f 16" = 5 g 4" =128 h 2507 = =
i 4490—1 — % i 990—3 =97 k (%)x+l =8 | (%)m-‘rQ -9
m 817 =277 n (5" =32 o ($)*=49 p (3)"" =243
3 Solve for z, if possible:
a 42m+1 — 8171 b 927:110 — (%)2z+1 c 2% x 8171 — i
4 Solve for z:
32:r+1 . 25% 1z 4% 2I+1
a —=9 b =2 C T
5290—5 _ 251—290 4 o w1 92x _ 813x+1
d 125% - 5:c+2 e 827m =2"x 4 f 27271' - 3172m
5 Solve for z:
a 3x2*=24 b 7x2%=28 c 3x2*tl =24
d 12x3 =3 e 4x(3)*=36 f 5x(3)"=20
Example 24 ) Self Tutor
Solve for z: 47 +2*-20=0
4% 4+2* —-20=0
(27)2 +27 -20=0 {compare a® +a—20 =0}
(2% —4)(2° +5) =0 {a> +a—20=(a—4)(a+5)}
2% =4 or 2* = -5
2% = 22 {2 cannot be negative}
=2

6 Solve for z:
a 4*—-6(2*)+8=0 b 4°-2*—-2=0 c 97 —12(3")+27=0
d 9 =346 e 25 —23(5%)—-50=0 f 49 +1=2(7")
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(21| [EXPONENTIAL FUNCTIONS

We have already seen how to evaluate 0™ when n € QQ, or in other words when n is a rational number.

But what about " when n € R, so n is real but not necessarily rational?

To answer this question, we can look at graphs of exponential functions.

The most simple general exponential function has the form y = 6 where b >0, b# 1.

For example, y = 2% is an exponential function. by
We construct a table of values from which we graph the function: 8
z|-3[-2]-1|0]|1]|2]3 y=27
1 1 1 6
When z=—10, y=2"°~0.001. 4

When z = —50, y=2"50 ~ 888 x 1016

As z becomes large and negative, the graph of y = 27
approaches the z-axis from above but never touches it, since

2
2% becomes very small but never zero. 4*/,/0/ 1

3 2 10 1 2 3 =
A

So,as x — —oo, y — 0 from above.

We say that y = 2% is ‘asymptotic to the z-axis’ or ‘y =10
is a horizontal asymptote’.

113 £

. —  meéans
We now have a well-defined meaning for b where b, n € R “approaches”.
because simple exponential functions have smooth increasing or
decreasing graphs.
Discovery 1 Graphs of exponential functions

In this Discovery we examine the graphs of various families of exponential functions.

DYNAMIC

Click on the icon to run the dynamic graphing package, or else you could use your GRAPHING

graphics calculator. PAC'fAGE

What to do: & ,i
1 Explore the family of curves of the form y =0* where b > 0. ‘

For example, consider y =27, y=3%, y =107, and y = (1.3)%.
a What effect does changing b have on the shape of the graph?
b What is the y-intercept of each graph?
¢ What is the horizontal asymptote of each graph?
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2 Explore the family of curves of the form y = 2% +d where d is a constant.
For example, consider y =2* y=2*+1, and y =2% — 2.
a What effect does changing d have on the position of the graph?
What effect does changing d have on the shape of the graph?
What is the horizontal asymptote of each graph?
What is the horizontal asymptote of y = 2% + d?

o & o T

To graph y =2 +d from y=2" what transformation is used?

3 Explore the family of curves of the form y = 2*~°.
For example, consider y = 2%, y=2%"1 ¢y =2%%2 and y =223
a What effect does changing ¢ have on the position of the graph?
b What effect does changing ¢ have on the shape of the graph?
¢ What is the horizontal asymptote of each graph?
d

To graph y =2*"¢ from y = 2% what transformation is used?

4 Explore the relationship between y =0* and y=0"% where b > 0.
For example, consider y =2 and y=2"7".
a What is the y-intercept of each graph?
b What is the horizontal asymptote of each graph?

¢ What transformation moves y =2 to y=2"%?

5 Explore the family of curves of the form y = a x 2* where a is a constant.

a Consider functions where a >0, suchas y=2% y=3x2% and y= % x 2%,
Comment on the effect on the graph.

b Consider functions where a < 0, suchas y = —2%, y=—-3x2% and y = —% X 2%,
Comment on the effect on the graph.

¢ What is the horizontal asymptote of each graph? Explain your answer.

From Discovery 1 you should have found that:

For the general exponential function y =a X b*~ ¢ +d where b >0, b#1, a#0:

e b controls how steeply the graph increases or decreases
e ¢ controls horizontal translation

e d controls vertical translation

e the equation of the horizontal asymptote is y = d
o if a>0, b>1

the function is
increasing

o if a>0, 0<b<1
the function is
decreasing

the function is the function is
decreasing increasing.

e if a<0, b>1 \ e if a<0, 0<b<1 /»
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We can sketch reasonably accurate graphs of exponential
functions using:

e the horizontal asymptote
e the y-intercept

e two other points, for example, when
=2, x=-2

Example 25

All exponential graphs are

similar in shape and have
a horizontal asymptote.

w) Self Tutor

Sketch the graph of y =27% —3.
Hence state the domain and range of f(z) =27% — 3.

For y=27%-3,
the horizontal asymptote is y = —3.
When z=0, y=2"°-3
=1-3
=-2

4

.. the y-intercept is —2. - 9\ O
When z=2 y=22-3

When z=-2, y=22-3=1
The domain is {z: 2 € R}. Therangeis {y:y > —3}.

Consider the graph of y = 2" alongside. We can
use the graph to estimate:
e the value of 2* for a given value of z, for
example 28~ 3.5 {point A}
e the solutions of the exponential equation
2% = b, for example if 2% =5 then
r~ 2.3 {point B}.

Y

(35}
A 4
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EXERCISE 4G
1 Use the graph of y = 2% to estimate the value of:
1
a 2 or 2 b 208 c 2'° d 22

2 Use the graph of y = 2" to estimate the solution to:
a 2*=3 b 27 =0.6 c 2 =43 d 2 =0.3

3 Use the graph of y =2% to explain why 2* =0 has no solutions.
4 Suppose f(x)=2x3". Find:

a f(0) b f(3) c f(-2)
5 Suppose g(z)=5"+2.
a Find ¢(0) and g(-1). b Find a such that g(a) = 27.

. . . . GRAPHING
6 Draw freehand sketches of the following pairs of graphs using your observations from PACKAGE

the previous Discovery:

a y=2" and y=2"-2 b y=2 and y=277 ;‘:’“A

c y=2% and y=2%"2 d y=2% and y=2(2%) K
7 Draw freehand sketches of the following pairs of graphs:

a y=3" and y=37° b y=3" and y=3"+1

c y=3" and y=-3" d y=3® and y=3"""1

8 For each of the functions below:

i Sketch the graph of the function.
ii State the domain and range.

ifi Use your calculator to find the value of y when z = /2.
iv Discuss the behaviour of y as x — Fo0.
v Determine the horizontal asymptotes.

a y=2"+1 b flz)=2-2° c y=2""+3 d f(z)=3-2""°

Example 26 %) Self Tutor

An entomologist monitoring a grasshopper plague notices
that the area affected by the grasshoppers is given by
A(n) = 1000 x 2927  hectares, where n is the number
of weeks after the initial observation.
a Find the original affected area.
b Find the affected area after:
i 5 weeks ii 10 weeks iii 12 weeks.

¢ Draw the graph of A against n.
d How long will it take for the affected area to reach 8000 hectares?

a A(0) = 1000 x 2°
= 1000 x 1
= 1000 .. the original affected area was 1000 ha.



122 Surds, indices, and exponentials (Chapter 4)

b i A(5) =1000x 2 il A(10) = 1000 x 2*
= 2000 = 4000
The affected area is 2000 ha. The affected area is 4000 ha.
ili A(12) = 1000 x 20-2%12
= 1000 x 22
~ 5280
The affected area is about 5280 ha.
C 800044 (ha) d We need to find n such that
A(n) = 8000
6000 1000 x 22" = 8000
o
2000 0.2n =3
a n=15
2 4 6 8 10 12 14 So, it will take 15 weeks.

9 A breeding program to ensure the survival of pygmy possums
is established with an initial population of 50 (25 pairs). From
a previous program, the expected population P in n years’
time is given by P(n) = Py x 295",
a What is the value of Fy?
b What is the expected population after:
i 2 years il 6 years iii 10 years?

¢ Sketch the graph of P against n using a and b only. © Matt West, Healosville Sanctuary

d How long will it take for the population to reach 800?

10 The weight W of bacteria in a culture ¢ hours after establishment is given by GPYC‘:';(TEE
W(t) =100 x 3%t grams. ;
a Find the initial weight. ;,'mi
b Find the weight after: i 5 hours ii 10 hours ifi 24 hours. |
¢ Sketch the graph of W against ¢ using the results of a and b only.

d How long will it take for the weight to reach 900 g?

11 The current flowing in an electrical circuit ¢ seconds after it
is switched off is given by I(t) = 32 x 4= amps.
a What current was flowing at the instant when it was
switched oftf?
b What current was still flowing after:
i 1 second il 2 seconds?
¢ Plot [ against .

How long will it take for the current to reach % amp?

12 Answer the Opening Problem on page 102.
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(1| [THE NATURAL EXPONENTIAL c*

We have seen that the simplest exponential functions are of y=(0.2)"
the form f(z) = b* where b >0, b# 1.

Graphs of some of these functions are shown alongside.

We can see that for all positive values of the base b, the
graph is always positive.

Hence b* >0 forall b> 0.

There are an infinite number of possible choices for the base
number.

However, where exponential data is examined in science, engineering, and finance, the base e ~ 2.7183
is commonly used.

e is a special number in mathematics. It is irrational like 7, and just as 7 is the ratio of a circle’s circumference
to its diameter, e also has a physical meaning. We explore this meaning in the following Discovery.

Discovery 2 Continuous compound interest

A formula for calculating the amount to which an investment grows is  w,, = ug(1+4)" where:

u, 1s the final amount, ug 1s the initial amount,
1 1s the interest rate per compounding period,
n is the number of periods or number of times the interest is compounded.

We will investigate the final value of an investment for various values of n, and allow n to get extremely
large.

What to do:

1 Suppose $1000 is invested for one year at a fixed rate of 6% per annum. Use your calculator to
find the final amount or maturing value if the interest is paid:

a annually (n=1, i=6% = 0.06) b quarterly (n=4, i= GT% = 0.015)
¢ monthly d daily
e by the second f Dby the millisecond.

2 Comment on your answers from 1.

3 If r is the percentage rate per year, ¢ is the number of years, and NN is the number of interest

payments per year, then i = % and n = Nt.

Nt
The growth formula becomes w,, = ug (1 + %) .

N 1 a- Tt
If we let a = —, show that w,, = ug [(1 + —) } .
I

a
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4 For continuous compound growth, the number of interest payments
per year N gets very large.

a Explain why a gets very large as IV gets very large.

b Copy and complete the table, giving your answers as accurately
as technology permits.

5 You should have found that for very large values of a,

a
(1 + l) ~ 2.718281828459....
a

Use the key of your calculator to find the value of e'. What
do you notice?

6 For continuous growth, u, = upe™ where g

a

(+3)

10

100

1000

10000

100 000

1000000

10000000

is the initial amount

r is the annual percentage rate

t is the number of years

Use this formula to find the final value if $1000 is invested for 4 years at a fixed rate of 6% per

annum, where the interest is calculated continuously.

From Discovery 2 we observe that:

If interest is paid continuously or instantaneously then the formula for calculating a compounding amount
un = ug(1+14)™ can be replaced by wu, = upe”, where r is the percentage rate per annum and ¢ is the

number of years.

Historical note

The natural exponential e was first described in 1683 by Swiss
mathematician Jacob Bernoulli. He discovered the number while
studying compound interest, just as we did in Discovery 2.

The natural exponential was first called e by Swiss mathematician and
physicist Leonhard Euler in a letter to the German mathematician
Christian Goldbach in 1731. The number was then published with
this notation in 1736.

In 1748 Euler evaluated e correct to 18 decimal places.

One may think that e was chosen because it was the first letter of
Euler’s name or for the word exponential, but it is likely that it was
just the next vowel available since he had already used a in his work.

EXERCISE 4H

1 Sketch, on the same set of axes, the graphs of y = 2%, y = €7,
and y = 3. Comment on any observations.

2 Sketch, on the same set of axes, the graphs of y =e€e” and y =e™ 7.
What is the geometric connection between these two graphs?

3 For the general exponential function y = ae*®

, what is the y-intercept?

Leonhard uler

GRAPHING
PACKAGE

o -0
)

b
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4 Consider y = 2e”.
a Explain why y can never be < 0. b Findyif: T x=-20 ii z=20.
5 Find, to 3 significant figures, the value of:
a ¢ b é3 c 7 d e e ¢!
6 Write the following as powers of e:
1 1
7 On the same set of axes, sketch and clearly label the graphs of:
frix—e®, g: x— et 2 h:xz—e*+3
State the domain and range of each function.
8 On the same set of axes, sketch and clearly label the graphs of:
[z e®, g:x— —e”, h:x+—10—¢€"
State the domain and range of each function.

9 Expand and simplify:

a (e®+1)2 b (1+e")(1—¢€") c e“(e7* —3)
10 Solve for z:
1
z ST 1
a e =./e b e =

11 Suppose f:x+—e€* and g:z+— 3x+2.
a Find fg(z) and g¢f(z). b Solve fg(x)= =
e

12 Consider the function f(z) = e”.
a On the same set of axes, sketch y = f(x), y ==, and y = f~1(2).
b State the domain and range of f~1.

Activity

Click on the icon to run a card game for exponential functions. SRR

[ 7~

Review set 4A

1 Simplify:
a 5v3(4—-3) b (6—52)2
2 Write with integer denominator:
2 VT 1
= b YL -
* v ¢ Wi

3 Simplify using the laws of exponents:
5(c%y)?

415 < 272 5 . 02,5
a a*b’ xab b 6xy° +9z°y (522)2
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4 Let f(x)=3".
a Write down the value of: i f(4) i f(-1)
b Find the value of k such that f(z+2) =k f(z), k€ Z.
5 Write without brackets or negative exponents:
a z72xg73 b 2(ab)~? c 2ab?

6 Write as a single power of 3:

;_Z b (\/g)l—m x gl—2z
7 Evaluate:
g =2
a 83 b 27 s
8 Write without negative exponents:
-3 =3 m?n 1 Am—1n)2
a mn b (mn) c = d (4m'n)

9 Expand and simplify:
a (3—e%)? b (vVz+2)(vz-2) c 277(22% 4 27)
10 Find the positive solution of the equation (8 + v/13)z? + (2 — v/13)z — 1 = 0.
Give your solution in the form z =a + by/13, where a, b € Q.
11 Solve for z:

a 2% =4 b 97 =272 c e =—

32 7
12 Match each equation to its corresponding graph:
a y=—¢€" b y—3><2” c y=€e"+1 =

+ U

<Y

o
.

[

o

T
13 If f(x) =3 x 2% find the value of:
a f(0 ) b f(3) c f(-2)
14 Consider the function f:x+— e ¥ — 3.
a State the range of the function. b Find the value of f(0).

¢ Solve f(z)= @

e
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15 The temperature of a dish ¢ minutes after it is removed from the microwave, is given by
T =80 x 2791t °C,

Find the initial temperature of the dish.

Find the temperature after: i 10 minutes ii 20 minutes.
Draw the graph of 7" against ¢ for ¢ > 0.

Find the time taken for the temperature of the dish to fall to 10°C.

o 6o T 9

Review set 4B

1 Simplify:
a (7+2v3)(5-3V3) b (6+2v2)(6-2V2)
2 Rationalise the denominator:
1 p V11 c 8tV2 a Lt5Vs
5—+/3 VT —2 3—2 6 — 35
3 Given the graph of y = 3” shown, estimate Ay
solutions to the exponential equations:
a 3*=5
z __ 1
b 3%=3 4
c 6x3"=20
y=3"
/
B -1 0 1 x
v
4 Write each of the following in the form a + bv/2 where a, b€ Z*:
V2 -1 1 1
a 2 —1)2 b c —— d ——
(v2-1) VZ+1 (V2 +1)2 3+2v2
5 Simplify using the laws of exponents:
7\3 2 o 3.4 8ab®
a (a") b pg” xp’q 20452
6 Write the following as a power of 2:
a 2x274 b 16273 c &
7 Write the following without brackets:
3\ 3 2,12 )
— 2}p5
a (@m¥)? . <_a) e (7% g (2a70°)
b 3z a
. X z+1
8 Simplify i
9 Write as powers of 5 in simplest form:
1
al b 5v5 c — d 25%%3
v5 V5
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10 Expand and simplify:

a e“(e™® +e%) b (2% +5)2 c (z2—-7)(z2+47)
11 Solve for x:
a 6x2°=192 b 4x (1) =324

12 Solve for x without using a calculator:

a 4 - (8) b 5T—3  1950—2 - 93— 32z

13 Suppose f(z)=2"7+1.
a Find f(3). b Find a such that f(a) = 3.

14 On the same set of axes draw the graphs of y =2 and y = 2% —4. Include on your graph
the y-intercept and the equation of the horizontal asymptote of each function.

15 Consider y =3" —5.
a Find y when z =0, £1, 2. b Discuss y as = — *+oo.
¢ Sketch the graph of y = 3% — 5. d State the range of the function.
16 Consider f:z— €21 and g:z > eV22,
a State the range of f.
b Find the exact value of g(v/2).
¢ Solve f(x)=g(x), giving your answer in the form 2z =a+bv/2 where a, b e Q.
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Opening problem

In a plentiful springtime, a population of 1000 mice will double
every week.

The population after ¢ weeks is given by the exponential
function P(¢) = 1000 x 2¢ mice.
Things to think about:

a What does the graph of the population over time look
like?

b How long will it take for the population to reach 20 000
mice?

¢ Can we write a function for ¢ in terms of P, which
determines the time at which the population P is reached?

d What does the graph of this function look like?

1| [LOGARITHMS IN BASE 10

Consider the exponential function f: x +— 10
or f(x)=10".

The graph of y = f(x)
its inverse function 1.

is shown alongside, along with

Since f is defined by y = 107,
f~1is defined by x = 10v.
{interchanging x and y}

y is the exponent to which the base 10 is raised in order to
get x.

\

We write this as y = log,oz or lgx and say that y is the logarithm in base 10, of x.

Logarithms are thus defined to be the inverse of exponential functions:

If f(z)=10°

WORKING WITH LOGARITHMS

Many positive numbers can be
easily written in the form 107.

For example:

then f~(x) =log;pz or lgx.

10000 = 10*
1000 = 10®
100 = 10?
10 = 10*
1=10°
0.1=10""!
0.01 =102

0.001 =103

2
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Numbers like /10, 104/10 and 5110 can also be written in the form 10% as follows:
1
- 1
V10 =10° 10V/10 = 10" x 10°° =105
— 100.5 = ]_01‘5 10

=107

In fact, all positive numbers can be written in the form 10%.

The logarithm in base 10 of a positive number is the power that 10 must be raised to in order to
obtain the number.

For example:

lg a means log,, a.

e Since 1000 = 103, we write log;,(1000) =3 010
a must be positive since
or 1g(1000) =3 10° > 0 forall 7 € R.
e Since 0.01 =102, we write log;(0.01) = —2
or 1g(0.01) = —2.
We hence conclude that:
lg10* = forany z € R.
a =10'8% forany a > 0.
Example 1 ) Self Tutor
Without using a calculator, find:
a log100 b log(+/10)
1
a log100 =log10? = 2 b log(v/10) = log(107) = %
EXERCISE 5A
1 Without using a calculator, find:
a 1g10000 b 1g0.001 c Ig10 d gl
1
e 1gvI0 f 1g(V/10) g lg (%> h g (10/10)
100
i lg+/100 j lg| —= k lg (10 x v/10 I Ig (100010
i 1gV/ Jg<m) g (10 x V/10) g (1000v/10)
Check your answers using your calculator.
2 Simplify:
, : 10 10
a lg10 b 1g(10% x 100) ¢ Ig (wm) g <10b>
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Example 2 %) Self Tutor

Use your calculator to write the following in the form 10® where x is correct to
4 decimal places:

a 8 b 800 c 0.08

a 8 b 800 c 0.08
— 101g8 — 101g 800 — 101g0.08
~ 100-9031 ~ 1029031 ~ 1010969

3 a Use your calculator to find 1g41, giving your answer correct to 4 decimal places.
b Hence, write 41 as a power of 10.

4 Use your calculator to write the following in the form 10” where z is correct to 4 decimal places:
a 6 b 60 ¢ 6000 d 06 e 0.006
f 15 g 1500 h 1.5 i 0.15 i 0.00015

5 Explain why you cannot find the logarithm of a negative number.

Example 3 %) Self Tutor

a Use your calculator to find: i lg2 il 1g20
b Explain why 1g20=1g2 + 1.

a i 1lg2~0.3010 b 1g20 =1g(2 x 10)
il 1g20~ 1.3010 ~ 1g(10%-3010  101)
~1g10*3%1%  fadding exponents}
~ 1.3010
~lg2+1
6 a Use your calculator to find: i lg3 it 1g300
b Explain why lg300 =1g 3 + 2.
7 a Use your calculator to find: i lgb ii 1g0.05
b Explain why 1g0.05 =1gb — 2.
Example 4 ) Self Tutor Remember fhat
Find z if:
a lgz=3 b lgz~—-0.271
a lgx=3 b lgx ~ —0.271
10'¢* = 10° oo 1087 & 10702

z = 1000 oo 2=~ 0.536
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8 Find z if:
a lgz=2 b lgz=1 c lgx=0
d lge=-1 e lgac:% f lga::—%
g lgx=14 h lgz=-5 i lgz~0.8351
J lgx ~2.1457 k lgz~ —1.378 I lgx~ —3.1997

1| [LOGARITHMS IN BASE a

In the previous section we defined logarithms in base 10 as the
inverse of the exponential function f(x) = 10".

If f(z)=10° then f~!(z)=1log,,x.

We can use the same principle to define logarithms in other
bases:

If f(z)=a® then f~!(z)=log,z.

If b=a% a#1, a>0, we say that x is the logarithm in base a, of b,
and that b=a" & z =log,b, b>0.

b=a* & x=log,b isread as “b=a” if and only if z =log,b”.

It is a short way of writing: log, b is the power
“if b=a" then z =log,b, and if = =log,b then b=a"". that a must be raised

) ) to in order to get b.
b=a" and x =log, b are equivalent or interchangeable statements.

For example:
e 8=2% means that 3 =log,8 and vice versa.

e log; 25 =2 means that 25 =52 and vice versa.

If y=a" then = =log,y, and so z = log, a”®.
If ©x=a¥ then y =log,x, and so x = a'°8® provided x > 0.
Example 5 ») Self Tutor

a Write an equivalent exponential equation for log;, 1000 = 3.

b Write an equivalent logarithmic equation for 3* = 81.

a From log;,1000 =3 we deduce that 10% = 1000.
b From 3*=81 we deduce that log;81 = 4.
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EXERCISE 5B

1 Write an equivalent exponential equation for:

d logwm:% e log,8=3 f logs9=2
g logy(1)=-2 h log;v27=15 i logg (%) =-1
2 Write an equivalent logarithmic equation for:
a 22=4 b 4% =64 c 52=25
d 77 =49 e 26 =64 f23=1
g 1072 =0.01 h 271 =1 i 373 =4
Example 6 ) Self Tutor
Find:
a log,16 b log. 0.2 ¢ log;, /100 d log, (%)
a log,16 b log0.2 ¢ logy, V100 d log, (%)
— 4 — 1 1
= log, 2 = logs(%) = log, (102)7 B 1
=4 = logs 57! , = log, 2
-2
5
3 Find:
a log;, 100000 b log,(0.01) ¢ log; /3 d log,8
e log, 64 f log, 128 g logs 25 h logs; 125
i log,(0.125) i logg3 k log, 16 I logss 6
m log; 243 n log, V2 o log,a" p logg2
q log, (%) r logg 66 s log,1 t logy9
4 Use your calculator to find:
a log;,152 b log,25 ¢ log,, 74 d log;,0.8
5 Solve for x:
a logyz =3 b logsz =3 ¢ log,81=4 d logy(x—6)=3
6 Simplify:
a log, 16 b log,4 ¢ log; (1) d log;, V1000
e log; (%) f log;(25V/5) g logs (\/%) h log, (2—\1/5)
i log, x? j log, vz k log,, m? I log,(x/Z)
m log, <l> n log, (%) o log, i) p log,, vm?®
n a Va

(Chapter 5)
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Discussion

We have seen that v/2 cannot be written in the form £ where p, q € Z, q# 0. We therefore say
q

\/2 is irrational.

More generally, 1/a is only rational if a is a perfect square.

What about logarithms? The following is a proof that log, 3 is irrational.

Proof: If log,3 is rational, then log,3 = 2 wWhere D,qEZL, q#0
q
3 =24
39 =2P

The left hand side is always odd, and the right hand side is always even, so
the statement is impossible.

Hence log, 3 must be irrational.

Under what circumstances will log, b be rational?

'LAWS OF LOGARITHMS

Discovery The laws of logarithms

What to do:
1 Use your calculator to find:
a lg2+1g3 b lg3+1g7 c lgd4+1g20
d 1g6 e lg21 f 1g80
From your answers, suggest a possible simplification for lga + 1gb.
2 Use your calculator to find:
a lg6—1g2 b 1g12—1g3 c lg3—1gh
d Ig3 e lg4 f 1g(0.6)
From your answers, suggest a possible simplification for lga —1gb.
3 Use your calculator to find:
a 3lg2 b 2lgh c —4lg3
d 1g(2°) e lg(5%) f 1g(37%)

From your answers, suggest a possible simplification for nlga.

From the Discovery, you should have found the three important laws of logarithms:

If A and B are both e lgA+1gB =1g(AB)
positive then: A
° 1gA—1gB:1g(E)

e nlgA=1I1g(A")
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More generally, in any base ¢ where ¢ # 1, ¢ > 0, we have these laws of logarithms:

If A and B are both
positive then:

e log. A+ log, B = log.(AB)

A
e log. A —log,. B = log, (E)

o nlog, A =log,. (A™)

Proof:
A n
o log.(AB) o log, (E) . log,.(A™)
— log,(c°5- 4 x &5 B) o = log, (5 4)")
= log, A +log. B _ logc(clogcAfloch) =nlog. A
= log, A —log, B
Example 7 %) Self Tutor
Use the laws of logarithms to write the following as a single logarithm or as an integer:
a lgb+1g3 b log;24 —log; 8 ¢ log,5—1
a lg5+1g3 b logs 24 —logs 8 c logy 5 —1
=lg(5 x 3) = log, (Z) = logy 5 — log, 2°
=lgl15 = log, 3 = log, (%)
=1
Example 8 ) Self Tutor
Simplify by writing as a single logarithm or as a rational number:
a 2lg7—31g2 b 2lg3+3 le8
lg4
g8
a 2lg7—31g2 b 2lg3+3 c )
g
= 1g(7%) — 1g(2%) = 1g(3%) + 1g(10%) o5
—1g49 — g8 =1g9+1g 1000 :1g7
= 1g(9000
=g (%) s(2000) _ sl

21g2

(Chapter 5)
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EXERCISE 5C

1 Write as a single logarithm or as an integer:

a lg8+1g2
lgp—Igm
lg2+1g3+1g4
lg5+1gd —1g2
log,, 40 — 2

3 —logs 50

T 5 - o

b lg4+1gh
e log,8 —log,2

h 1-+log,3

k 2+4+1g2

n log; 6 —log; 2 — logs 3
q logs 100 —logs 4

2 Write as a single logarithm or integer:

a 5lg2+1g3
d 2log; 5 — 3logs 2
g 3—-1g2—-2lghH

3 Simplify without using a calculator:

lg4
lg2

Ig3
d &2
lg9

b 2lg3+3lg2
e 1logg4+logg3
h 1-31g2+1g20

logs 27
logs 9
logs 25

logg(0.2)

Check your answers using a calculator.

- =y 0

lg40 —1g5

lg 5+ 1g(0.4)
lgd—1

t+1gw

lg50 — 4

lg (%) +1g3+1g7

3lgd —1g8
sle(3)

2 —1log,4—1log, 5

lg8
g2

logy 8
log,4(0.25)

) Self Tutor

Example 9
Show that:

a Ig(3)

a lg(3)
=1g(37%)
=-—21g3

4 Show that:
a lg9=2Ig3

d lg(:)=—1g5
g logg4 +logg9 =2

5 Find the exact value of:

a 3lg2+2lg5h—1lg4

b 1lg500=23—lg2

b 1g500

=1z (43")

=1g 1000 — 1g 2

=1g10% —1g2

=3—-1g2

b lgﬁ:%IgQ
e lgh=1-1g2

c lg (%) = —-3lg2
f 1g5000 =4 —1g2

2logy5 2+ log1,9 =1

b 2log,3 —log, 6 — 3log, 9

¢ 5logg2+2logg 3 — 1 logg 16 — logg 12
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6 If v=log, P, y=log, @, and =z =log, R, writein terms of z, y, and z:

a logy(PR) b log,(RQ?) ¢ log, (%)
3 2
d log,(P*/Q) e log, (%) f 1og2<RP\§‘7>

7 If p=log,2, g=log,3, and r =log,b, writein terms of p, ¢, and r:

a log, 6 b log, 45 ¢ log, 108 =
0.2 means
¢ o () e lm(H) f log,(07)

8 If logg M =129 and log, N*>=1.72, find:

2
a log, N b log,(MN) ¢ log, <\]/V_M)

9 Suppose log, P=5 and log,(P3Q?) =21. Find log, Q.

2
10 Suppose that log,(AB3) =15 and log, <%> =0,

Write two equations connecting log, A and log, B.

Find the values of log, A and log, B.
Find log, (B*VA).

Write B in terms of t.

1] [coGARITHMIC EQUATIONS

We can use the laws of logarithms to write equations in a different form. This can be particularly useful if
an unknown appears as an exponent.

2 6 T 9

For the logarithmic function, for every value of y, there is only one corresponding value of z. We can
therefore take the logarithm of both sides of an equation without changing the solution. However, we can
only do this if both sides are positive.

Example 10 %) Self Tutor
Write these as logarithmic equations (in base 10):
a y=5x3° b P= %
n
a y=5x3" b p-2
. v
lgy =1g(5 x 37) 20
lgy =1g5+1g 3" lgP:lg<_l>
n 2

lgy=1gb+zlg3
1
2

lgP=1g20 —lgn
lg P =1g20 — %lgn
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Example 11 «) Self Tutor
Write the following equations without logarithms:
a lgy==zlgd+1g3 b logy, M =3logya—5
a lgy =xlgd+1g3 b logo M = 3logya — 5
L lgy =lg4” +1g3 . logy M =log, a® — log, 2°
gy =1g(3 x 4%) s
a
y=3x4" :. logy M = log, <3—2)
M=%
32
EXERCISE 5D.1
1 Write the following as logarithmic equations in base 10, assuming all terms are positive:
a y=2" b y=2a° c M=d!
d T=5" e y=+/r f y=7x3"
g S:% h M=100x 7° i T=5Vd
_ 1000 _ 200 x 2 _[s
F = NG k S=200x2 Iy "

2 Write the following equations without logarithms:

a lgy==zlg7 b lgD=I1gx+1g2 ¢ log, F'=1log,5 —log,t
d lgy=2zlg2+1g6 e lgP:%ng f lgN:félgp
g lgP=3lgz+1 h lgy=2—1g2 i lgy=2Ilgz—1
j logy,T =5logy k+1 k log; P =4logsn —2 I logoy=4x+3

3 Suppose lgy =3lgz —l1g2.
a Write y in terms of z, without using logarithms.
b Find y when: i z=2 ii =4

4 Suppose lgy =3z +2.

a Write y in the form y = a(10°®) where a, b € Q.
b Find y when: i x=0 ii xr=3

5 Copy and complete:

a If there is a power relationship between y and z, for example y = 53, then there is a linear
relationship between lgy and ......

b If there is an exponential relationship between y and x, for example y = 4 x 2%, then there is
a linear relationship between ...... and ...
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SOLVING LOGARITHMIC EQUATIONS

Logarithmic equations can often be solved using the laws of logarithms. However, we must always check
that our solutions satisfy the original equation, remembering that 1g « is only defined for x > 0.

Example 12 ) Self Tutor
Solve for z:
a lg(x—6)+1g3=21g6 b lgz+lg(z+5)=1gl4
a lg(x—6)+1g3=2Ig6 b lg:c+lg(a:+5) lg14
o lg(z —6) =1g6? —1g3 o lg(z(z+5)) =1g14
" lg(ﬂcf6):lg(%) coox(r+5)=14
L r—6=12 o2t +5r—14=0
=18 S+ ND(x-2)=0
Check: x—6>0, so £>6 c.ox=—Tor2

But x>0 and z+5>0
. x =2 1is the only valid solution.

EXERCISE 5D.2
1 Solve for z:
a lg(zx—4)=1g3+1g7
c lg(2z)=1+11g16
e lgx—lg(z—4)=1g5

lg(z+5) —1g8=21g3

logy x = 3logy 5 — 6

logs(xz — 2) — logs(z + 2) = logs 3
lg(z+2)—1=1g(z — 3) — lg12

5 = 2 T

g logsz—2=logs(x—1)

2 Solve for z:

a lgz+lg(z+1)=1g30 b log;(x +9) + logs(z + 2) = log;(20z)
¢ log; z =log; 8 —log,(6 — x) d logg(z+4) +logg(x—1)=1
e lgz+lg2e+8)=1 f lg(z+2)+1g(z+7) =1g(2x +2)
g 2logyx —logy,(8 —3z) =1 h log,x +logy(20 —7) =2
Example 13 ) Self Tutor
Solve for x: log, 3 +log, 12 =2 The base of a

logarithm must
be positive.

log, 3 +1log, 12 =2
. log, (3 x 12) = log, (z?)
36 =a”
=6 {since x > 0}

3 Solve for x:
a log,32—-1log,4=1 b log,45=2+log, 5

¢ log,54=3—1log,4 d 2log,2—3=log, (%6)
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Historical note The invention of logarithm

It is easy to take modern technology, such as the electronic calculator, for granted. Until electronic
computers became affordable in the 1980s, a “calculator” was a profession, literally someone who would
spend their time performing calculations by hand. They used mechanical calculators and technology such
as logarithms. They often worked in banks, but sometimes for astronomers and other scientists.

The logarithm was invented by John Napier (1550 - 1617) and
first published in 1614 in a Latin book which translates as a
Description of the Wonderful Canon of Logarithms. John Napier
was the 8th Lord of Merchiston, which is now part of Edinburgh,
Scotland. Napier wrote a number of other books on many subjects
including religion and mathematics. One of his other inventions
was a device for performing long multiplication which is now
called “Napier’s Bones”. Other calculators, such as slide rules,
used logarithms as part of their design. He also popularised the
use of the decimal point in mathematical notation.

John Napier

In Napier’s time, mathematicians did not use the same notation a® for indices, nor did they make use of
the general concept of a function as described in this course. It was therefore impossible for Napier to
explain logarithms as we have done. Instead, Napier’s definition was based on the continuous movement

of two points.
To enable people to actually use logarithms, he

Gr. 9

° ot iy ;;— T ' calculated tables of numbers by hand to seven places

win irits arithmi | Defferenrie | logavithmi Sinur g 2 2

o] Tisgasar] T ikseiig [16ai7ags [ ORE S80S 4o of decimals. This took him many years of work. To

¥ 67218 ¢31826 | 18408484 | 124342 0876 o .

2 | ez | i iaen ] 18380509 | 124d0a | |26 57]52  find the logarithm of a particular number, you would
15739064 | | 18496231 | 18370004 | 125267 [ | vB75514 |57 1 1 1

- 1575857 | | x4ty | cassd mml ,gm;g i look it up in the table. Although this seems awkward

5 1578700 18450772 | 18333576 | 126196 | | 90874597 | 55 G 2 g

F i [T s T 2, to us, it is much quicker to use tables than calculate
1584443 18423491 | 18296324 98736 3 L : L

& | Benii| Lisdosian | sizmer| s el multiplication, division, and square roots by hand.

9 | 15v01o7 | [ 18387245 [ 18259203 9873754 | 51

10| 1593069 13362213 ¢ 18240692 | 128531 9872291 | 50

1| 1595941 18351214 | 18222213 | 129001 | {o871827 |49

12| 150880z 1%¥333237 | 18203705 129472 & 9871362 [ 48

13| 1601684 18315204 | 18185351 | 129043 o870807 | 47

14| 1604555 lSz.w_,y;"f.}]‘_laﬁﬂl.-.’lG‘ﬁ_lf-s _ 139415 9_?{704;.1 46

15| 1607426 | 13279507 [ 18148619 | 130888 | | 9865064 | 4¢

Logarithms were an extremely important development and they
had an immediate effect on the seventeenth century scientific
community. Johannes Kepler used Napier’s tables to assist
with his calculations. This helped him develop his laws of
planetary motion. Without logarithms these calculations would
have taken many years. Kepler published a letter congratulating
and acknowledging Napier. Kepler’s laws gave Sir Isaac Newton
important evidence to support his theory of universal gravitation.
200 years later, Laplace said that logarithms “by shortening the
labours, doubled the life of the astronomer”.

Johannes Kepler
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|| INATURAL LOGARITHMS

In Chapter 4 we came across the natural exponential e ~ 2.71828.

Given the exponential function f(x) = e®, the inverse function f~! =log, x is the logarithm in base e.
We use Inz to represent log, z, and call Inx the natural logarithm of z.
y =Inx is the reflection of y = e in the mirror line y = x.

Notice that: e Inl=Ine’=0

e Ine=Inel =1

o Ine?=2
e Ine=Ine

e In <1> —Inel=—1 /

N =

N

e

Ine® =2 and e®? = g.

. €T
Since a” = (e?)" =e”"e,  a® =e*, 4> 0.

EXERCISE 5E.1
1 Without using a calculator find:
a Ine? b Ined ¢ In,/e d Inl

e In (é) f lni/e g In (Z?) h In <%>

Check your answers using a calculator.

2 Simplify:
a el b 2In3 c e—Ind d e2n2
3 Explain why In(—2) and In0 cannot be found.
4 Simplify:
a Ine® b In(e x e%) c In (e“ xeb) d In(e)? e In <Z—:)
Example 14 o) Self Tutor

Use your calculator to write the following in the form e* where k is correct to
4 decimal places:

a 50 b 0.005
a 50 b 0.005
_ e11150 {using T = elnw} _ ean.OOS

~ 63.9120 ~ 675.2983
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k

5 Use your calculator to write the following in the form e® where k is correct to 4 decimal places:

a 6 b 60 c 6000 d 0.6 e 0.006
f 15 g 1500 h 15 i 0.15 j 0.00015
Example 15 ) Self Tutor

Iif In 2 = @
then z = e“.

Find z if:
a Inz =217 b Inz=-0.384
a Inz=217 b Inz=-0.384
g =217 g e 0384
Lo~ 8.76 c. =~ 0.681
6 Find z if:
a lnx=3 b Inz=1 ¢ lnx=0 d Inx=-1
e lnx=-5 f Inxz~0.835 g Inxr=~2145 h Inx =~ —3.2971

LAWS OF NATURAL LOGARITHMS

The laws for natural logarithms are the laws for logarithms written in base e:

For positive A and B:
A
e InA+1InB=1In(AB) e nA—InB=1In (—) e nln A =1n(A")

B
Example 16 %) Self Tutor
Use the laws of logarithms to write the following as a single logarithm:
a In5+In3 b In24 —In8 c In5-1
a In5+1In3 b In24 —1In8 c In5—1
=In(5 x 3) =1n (%) =In5—In ¢!
=1In15 —1n3 =1In (%)
Example 17 ) Self Tutor
Use the laws of logarithms to simplify:
a 2In7—3In2 b 2In3+3
a 2In7—3In2 b 2In3+3
= In(7?) —In(2%) =1n(3?) + Iné?
=1n49 —In8 =In9+Ine?

=In (%) = In(9e?)
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EXERCISE 5E.2
1 Write as a single logarithm or integer:
a Inl5+1n3 b In15—-In3 ¢ In20—Inb
d In4+1In6 e In5+1n(0.2) f n2+1In3+1Inb
g 1+1n4 h In6-1 i n5+In8—1n2
j 2+1In4 k In20-—2 I In12—In4—1In3
2 Write in the form Ina, a € Q :
a 5In3+1n4 b 3In2+2Inb 3In2 —1n8
d 3In4—2In2 7In8+1n3 f 1ln(3)
g —In2 —In(3) i —2In(§)
Example 18 %) Self Tutor
Show that:

a In (%) = —2In3

a  m(}

=1In(372%)
=—-2In3

3 Show that:
a In27=3In3

d In(3)=-In6

4 Show that:
a Invy5= % Inb5

c In (%) = —%ln2

Example 19

b 1n<f) —1-2In2
4

o

=Ine—In4
=Ine! —1n2?
=1—-2In2

b ln\/§:%1n3

16
1\ 1 ) —
e In(d)=-3m2 fn(S)=1-m5

o) Self Tutor

Write the following equations without logarithms:

a InA=2lnc+3

a InA=2lnc+3
- InA=Inc®+ e
. InA =In(c*e?)
- A= 6263

b InM=3a—1In2

b InM =3a—1n2
. InM =1Ine** —1n2

3a
. InM=1In <e—>
2

. _1_3a
. M=3e
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5 Write the following equations without logarithms, assuming all terms are positive:
a mhD=Ihz+1 b nF=—-Inp+2 ¢ mP=2x+1nbd
d nM=2ny+3 e mMB=3t—1n4 f lnN:—%lng
g InQ ~3lnz+2.159 h InD~0.41lnn — 0.6582 i InT~—x+1.578

F TIAL EQUATIONS USING

In Chapter 4 we found solutions to simple exponential equations where we could make equal bases and

then equate exponents. However, it is not always easy to make the bases the same. In these situations we
use logarithms to find the solution.

Example 20 ) Self Tutor
Solve for z, giving your answers correct to 3 significant figures:
a 2*=7 b 531 =90
a 2" =7 b 5571 =90
L 1g2® =1g7 lg 5%~ =1g90
zlg2=1g7 {lg(a") =nlga} Bz —1)1g5=1g90 {lg(a™) =nlga}
lg2 lg 5
T~ 2381 x:%<1+lgﬂ)
Igh
T~ 1.27
Example 21 o) Self Tutor
Find z exactly:
a e =30 b 3¢’ =21
a =30 b 3¢ =21
x =1n30 z
e =7
Z—In7
2
x=2In7
EXERCISE 5F
1 Solve for z, giving your answer correct to 3 significant figures:
a 2*=10 b 3*=20 c 47 =100

d (1) =0.0625 e (

f 10° =0.00001
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2 Solve for z, giving your answer correct to 3 significant figures:

a 5% =100 b 2% =75 ¢ (0.8)3¢ =0.1
d 3°71=200 e 4°t2=25 f 6271 =800
1
g 728 =1000 h (3711) = 480 i (27%)7 =10
3 Solve for z, giving an exact answer:
a e"=10 b e* =1000 c 2 =0.3
d ¢ =5 e ¢ =18 fez=1
4 a Solve e?* =300 exactly.
b Use your calculator to find the solution correct to 2 decimal places.
Example 22 ) Self Tutor

A farmer monitoring an insect plague notices that the area affected by the insects is given by

A = 1000 x 297 hectares, where n is the number of weeks after the initial observation. How
long will it take for the affected area to reach 5000 hectares?

When A = 5000,
1000 x 297 = 5000

20.Tn _ 5 Logarithms allow us to solve

exponential equations even if
lg 207 = lg5 vfe cannot v:lrite both sides
0.7nlg2 =1g5 with the same base.
. Igh
T 0.7 x1g2
n~ 3.32

it takes about 3 weeks and 2 days.

5 Solve for z, giving an exact answer:
a 4x27%=0.12 b 300 x 5% = 1000 c 32x3702r -4
6 The weight W of bacteria in a culture ¢ hours after establishment

is given by W =20 x 2015 grams. Find, using logarithms, the
time for the weight of the culture to reach:

a 30 grams b 100 grams.
7 The mass M of bacteria in a culture ¢ hours after establishment is
given by M =25 x e¥!t grams.

a Show that the time required for the mass of the culture to reach
50 grams is 101n2 hours.

b Find the time required correct to 2 decimal places.

8 The weight of radioactive uranium remaining after ¢ years is given by the formula
W(t) = 50 x 270:0002¢ grams, ¢ > 0.
a Find the initial weight of the uranium.
b Find the time required for the weight to fall to 8 grams.
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Example 23

u) Self Tutor

Find algebraically the exact points of intersection of y =e* —3 and y=1-—3e .

The functions meet where
e? —3=1-3e""
e* —4+3e =0
o€ —4e" +3=0
(e —=1)(e®*—=3)=0
e*=1 or 3
x=1Inl or In3
r=0 or In3

When =0, y=¢"—3=-2
When z=1n3, y=em3-3=0

the functions meet at (0, —2) and at (In3, 0).

9 Solve for z:
a e =2 b ef=e"
d e +2=3e""
10 Find algebraically the point(s) of intersection of:
and y=¢e%**—6

and y=05e*—-3

a y=¢€"

c y=3—¢€"

{multiplying each term by e”}

e 1+12e7 7% =¢”

GRAPHING
PACKAGE

[
[\
R

c e —5e*+6=0
f e*4+e =3

b y=2"4+1 and y=7-—¢€"

1| [THE CHANGE OF BASE RULE

A logarithm in base b can be written with a different base ¢ using the change of base rule:

) log. a

og,a =

= log. b

Proof: If logya=z, then b =a

log,. b* =log.a
xlog,.b=1log.a

= log. a

log. b

log. a

logy a = 10; =
C

for a,b,¢>0 and b, c# 1.

{taking logarithms in base c}

{power law of logarithms}

We can use this rule to write logarithms in base 10 or base e. This is useful in helping us evaluate them on

our calculator.
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Example 24 ) Self Tutor
Evaluate log, 9 by:
a changing to base 10 b changing to base e.
a log,9= 28109 & 317 b log,9 =2 ~3.17
log1p 2 In2

The rule can also be used to solve equations involving logarithms with different bases.

Example 25 ) Self Tutor

Solve for z: log, = logg 15

log, = logg 15

. logyx = logy 15 {writing RHS with base 2}
logo 8
10g2 - log?g) 15

Wl

log, = log, 15

r =15
EXERCISE 5G
1 Use the rule log,a = llog% to evaluate, correct to 3 significant figures:
0810
a log;12 b log, 1250 ¢ log;(0.067) d log, ,(0.006984)
2

L .
2 Use the rule logya = % to solve, correct to 3 significant figures:
n

If 27 = a,

a 2 =0.051 b 4 =213.8 c 3%+l =4.069 then z = log, a.

3 Write:
a logy 26 in the form alogsb, where a, be Q
b log, 11 in the form alog,b, where a, b & Z

in the form alogy b, where a, b € Z.
log7 25

4 Solve for x:
a log; x =log,; 50 b log,z =log, 13 ¢ logysx =logy 7
d log; /7 + loggx = logs 5 e loggr? —log, Yz =1 f log, 23 +logy /T =8

1

5 a Show that log,b= .
logy a

b Solve for z:
i logsxz=4log,3 il logyz—4=>5log,2 ili 2logyx+ 3log,4=7
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.|| |GRAPHS OF LOGARITHMIC FUNCTIONS

Consider the general exponential function f(z) =a*, a >0, a# 1.

The graph of y = a” is:

For a > 1: Ay For 0<a<1: Ay

o
<Y
©)

The horizontal asymptote for all of these functions is the z-axis y = 0.

The inverse function f~1 is given by = =a¥, so y =log, .

If f(x) =a® where a >0, a# 1, then f~!(z)=log, =

Since f~!(z) =log,x is an inverse function, it is a reflection of  f(x) = a®
may therefore deduce the following properties:

in the line y = x.

Function f(z)=a”" fl(z) =log, =
Domain {z:z eR} {z:2z >0}
Range {y:y>0} {y:yeR}

Asymptote | horizontal y =0 | vertical z =0

The graph of y =log,x for a > 1:

4

The vertical asymptote of y = log, x is the y-axis z = 0.

The graph of y =log,x for 0 <a < 1:

-+ "g‘ 1
— 1 =1
v=a | N ke

]Y

5\

We

Since we can only find logarithms of positive numbers, the domain of f~!(z) =log, z is {z |z > 0}.

In general, y = log,(g(z))

is defined when g(z) > 0.
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Example 26 ) Self Tutor

Consider the function f(z) = logy(z — 1) + 1.
a Find the domain and range of f.
b Find any asymptotes and axes intercepts.
¢ Sketch the graph of f showing all important features.
d Find f~1

a r—1>0 when z>1
So, the domain is {x :2 > 1} and the range is y € R.

b As z — 1 from the right, y — —oo, so the vertical asymptote is = = 1.
As © — 00, Yy — 0.
When z =0, y is undefined, so there is no y-intercept.
When y =0, logy(x —1)=—1
r—1=27"1
T = 1%

. . 1
So, the z-intercept is 15.

c Ay d f is defined by y =logy(z—1)+1
ol | o f71 is defined by z =logy(y —1)+ 1
x—1=logy(y — 1)
4 y—1= gr—1
9 y=2""141
Fl ) =25t 41
2 0 which has the horizontal asymptote y =1 v
Lo Its domain is {z: z € R}, and
its range is {y:y > 1}.
A\
EXERCISE 5H

1 For the following functions f:
i Find the domain and range.
ii Find any asymptotes and axes intercepts.
iii Sketch the graph of y = f(z) showing all important features.
iv Solve f(x)=—1 algebraically and check the solution on your graph.

v Find f'.
a f:x—logg(z+1), x>-1 b f:x—1-logg(xz+1), =>-1
c f:ax—logs(r—2)—2, z>2 d f:x—1-logs(x—2), =>2

e f:x—1-2log,z, >0
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Example 27 ) Self Tutor
Consider the function f : 2 +— e* 3.
a Find the equation defining f~1.
b Sketch the graphs of f and f~! on the same set of axes.
¢ State the domain and range of f and f!.
d Find any asymptotes and intercepts of f and f~!.
a flz)=e"? b vk y=—ler T3
flis x=ev3 B de1
y—3=Inz ’ y=s+inz
y=3+Inz g 3)
So, fY(z)=3+1Inz
c Function f f! . . (3,1) R
Domain | xR | >0 . O ’
Range | y>0 [ yeR v
d For f, the horizontal asymptote is y = 0, For f~!, the vertical asymptote is = = 0,
and the y-intercept is e 3. and the z-intercept is e 3.
2 For the following functions f:
i Find the equation of f~1.
ii Sketch the graphs of f and f~! on the same set of axes.
iii State the domain and range of f and f!.
iv Find any asymptotes and intercepts of f and f~!.
a f(zx)=e€e"+5 b f(z)=e"t'-3
¢ f(z)=Inz—-4, >0 d f(x)=n(zx—-1)+2, z>1
3 Consider the graphs A and B. One of them is the graph of by A
y =Inx and the other is the graph of y = In(x — 2).
a Identify which is which. Give evidence for your answer.
b Copy the graphs onto a new set of axes and add to them  <—5 >

the graph of y = In(z + 2).
¢ Find the equation of the vertical asymptote for each graph.

4 Kelly said that in order to graph y = In(2?), z >0, you
could first graph y =1Inz and then double the distance
of each point on the graph from the z-axis.

Is Kelly correct? Explain your answer.

//

y=In(a?)

—
<Y
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5 Consider the function f:x+— e®t3 4+ 2.

a Find the defining equation for f~1.
b Find the values of « for which:
i f(z)<21 ii f(z) <201 iii  f(z) < 2.001 iv f(z)<2.0001
Hence conjecture the horizontal asymptote for the graph of f.

¢ Determine the equation of the horizontal asymptote of f(x) by discussing the behaviour of f(x)
as x — *oo.

d Hence, determine the vertical asymptote and the domain of f~1.
6 Consider f(z) = logy(z + 3).

a Find: i f(5) i f(z?) i f(2x—1)

b State the domain of f(z).

¢ Solve f(x?+4)=>5.

7 Suppose f(z)=e3* + 1.

a State the range of f(z). b Find f~1(x).
¢ Find f1(10). d State the domain of f~1(x).
e Find (fof YH(z) and (f~'of)(w).

2z

8 Suppose f:ze
a Find: i (flog)(a) ii (gof) )
b Solve (flog)(z)=In5.

and g:x+— 2z —1.

9 Consider f:x+ 10e”* and g:x+— In(z—3).

a Find f(1) and g¢(6). b Find the z-intercept of g(x).
¢ Find fg(z). d Solve f(z)=g '(z).
10 Let f(z)=In(zx+6) and g(x)=z—1n3.

a State the domain of f(z). b Find f~!(x).
¢ Find the axes intercepts of f(z). d Solve gf(z)= f(z?—-12).

Activity

Click on the icon to obtain a card game for logarithmic functions. CARD GAME

By~

Review set 5A

1 Find the following, showing all working:
a log, 64 b log, 256 ¢ log,(0.25) d log,s 5

e loggl f logg; 3 g logy(0.1) h log, vk
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2

10

11

12

13

14

15

16

Find:

a lg/10 b
Simplify:

a 4In2+2In3 b
Find:

a In(e /e) b
Write as a single logarithm:

a lgl6+2Ig3

1
lg /10

%ln9—ln2

¢ lg(10® x 10°t1)

c 2Iln5-—-1

¢ In(e?®)

b log, 16 — 2log, 3

Write as logarithmic equations:

a P=3xT7"

Solve for x:

a logy(z+5)—logy(z—2)=3

S

m = —

Show that log; 7 x 2log, x = 2logs x.

Write the following equations without logarithms:

a lgT =2lgx—1gb

Write in the form alnk where a and & are positive whole numbers and k is prime:

a In32 b

b lgz +lg(z +15) =2

b log, K =z +log,3

¢ 2+logy5

Copy and complete:

In 125 c In729
Function | y=logsz | y=In(z +5)
Domain

Range

If A=logs2 and B =logy3, write in terms of A and B:

a logs 36 b log;54
Solve for x:
a 3e"—5=—-2"

¢ log;(8v/3)

b 2lnz—3n (l) - 10
T

Solve for z, giving your answer to 2 decimal places:
b 6 x 23 =300

a 7" =120

A population of seals is given by P =20 x 23 where ¢ is the time in years, ¢ > 0.

Find the time required for the population to reach 100.

Consider f:x— be ® + 1.

a State the range of f.
Find: i fi(x)

Solve f~1(z)=0.

o & 060 T

State the domain of f~

i 12

1

Sketch the graphs of f, f~1, and y = x on the same set of axes.

d logs(20.25) e logs(0.8)
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Review set 5B

1 Without using a calculator, find the base 10 logarithms of:

a /1000 b % c lt)o_b
2 Write in the form 10 giving = correct to 4 decimal places:
a 32 b 0.0013 ¢ 8.963 x 107°
3 Find z if:
a log,z= -3 b log;z ~ 2.743 ¢ loggz ~ —3.145

4 Write the following equations without logarithms:
a log, k~1.699+ z b log, @ = 3log, P+ log, 5

0

lgA=2x1g2+1g6
5 Solve for z, giving exact answers:
a 5 = b 20 x 222! = 640
Find the exact value of log;5 3 — 2log;, 6.
Write logg 30 in the form alogy, b, where a, b € Q.

Solve for z:
a logyz+log,(22z —8) =3 b log,135=3+log, 5
9 Consider f(z)=¢€® and g(z)=In(z+4), > —4. Find:
a (fog)(5) b (g0 f)(0)
10 Write as a single logarithm:
a In60—1n20 b In4+Inl ¢ In200 —In8+1Inb
11 Write as logarithmic equations:
a M=5x6" bT:% cG:%

12 Solve exactly for x:

a e =3¢ b e2® —7e*+12=0
13 Consider the function g :x — logs(z + 2) — 2.

a Find the domain and range.

Find any asymptotes and axes intercepts for the graph of the function.

b
¢ Find the defining equation for g~!.
d

1

Sketch the graphs of g, ¢g~*, and y = x on the same axes.

t

14 The weight of a radioactive isotope remaining after ¢t weeks is given by W = 8000 x e ™ grams.
Find the time for the weight to halve.

15 Solve for z:

a log,z + log, 2* = log, 125 b log,z =25log, 2 ¢ logzx +8log,3 =6
16 Consider f(z) =5e** and g(z) = In(z —4).
a State the domain and range of g. b Find the axes intercepts of g.

¢ Find the exact solution to  fg(z) = 30. d Solve f(z)=g ().
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Opening problem

To determine whether 7 is a factor of 56, we divide 56 by 7. The result is exactly 8. Since there is no
remainder, 7 is a factor of 56.
Things to think about:
a Can we perform a similar test for algebraic factors? For example, how can we determine whether
x — 3 is a factor of 2% — 422 + 2z + 3?
b Given that = — 3 is a factor of 2 — 422 4+ 22 + 3, what does this tell us about the graph of
flx) = 23 — 422 + 22 + 37

Up to this point we have studied linear and quadratic functions at some depth, with perhaps occasional
reference to cubic functions. These are part of a larger family of functions called the polynomials.

'REAL POLYNOMIALS

A polynomial function is a function of the form

P(r) = apz" + ap_12" 1 + ... + apx® + a1x + ag, ay, ..., a,, constant, a, # 0.

We say that: x is the variable
ag 1s the constant term
an 1s the leading coefficient and is non-zero
a, 1s the coefficient of " for »=0,1,2, ..., n
n is the degree of the polynomial, being the highest power of the variable.

n
In summation notation, we write P(z) = Y a,z",
r=0

which reads: “the sum from » =0 to n, of a,z"”.

A real polynomial P(z) is a polynomial for which a, € R, r=0,1, 2, ..., n.

The low degree members of the polynomial family have special names, some of which you are already
familiar with. For these polynomials, we commonly write their coefficients as a, b, c, ....

Polynomial function Degree Name
axr+b, a#0 1 linear

ax’? +br+c, a#0 2 quadratic
ax® +bx?> +cx+d, a#0 3 cubic
art +bx® +cx’ +dr+e, a#0 4 quartic

ADDITION AND SUBTRACTION

To add or subtract two polynomials, we collect ‘like’ terms.
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Example 1 ) Self Tutor
If Plz)=2®-222+3z—-5 and Q(z)=2x3+22—11, find:
a P(z)+Q(z) b P(z) - Q(z)
a P(z) + Q(x) b P(z) — Q(x)
= 2 -22°43x—5 = 2% 222 + 3z -5 — (22 + 22 — 11)
+22° 4+ 22 —11 = x® —22% + 3z -5
= 32%— 22 +3z-16 —22° — 2? +11

= —2°-322+32+6

Collecting ‘like’ terms is
made easier by writing
them one above the other.

It is a good idea to place
brackets around expressions
which are subtracted.

SCALAR MULTIPLICATION

To multiply a polynomial by a scalar (constant) we multiply each term by the scalar.

Example 2 ) Self Tutor
If P(x)=2z*-223+4z+7, find:
a 3P(z) b —2P(z)
a 3P(x) b —2P(x)
=3(x* — 223 + 42+ 7) = —2(z* — 223 + 42+ 7)
= 32" — 62° + 12z + 21 =—2z" +42° — 8z — 14

POLYNOMIAL MULTIPLICATION

To multiply two polynomials, we multiply each term of the first polynomial by each
term of the second polynomial, and then collect like terms.

Example 3 ) Self Tutor
If Plx)=2°-2z+4 and Q(z)=222+3z -5, find P(z)Q(z).

P(2)Q(z) = (2 — 2z + 4) (22 + 3z — 5)
= 23(22% + 32 — 5) — 22(22% + 32 — 5) 4+ 4(22° + 3z — 5)
= 225 + 32* — 523
— 4z — 622 + 10z
+ 827 + 12z — 20
=225 + 3z — 923 + 222 + 222 — 20
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EXERCISE 6A.1
1 If P(x) =z?+2r+3 and Q(z)=42?+5z+6, find in simplest form:
3P (x) b P(z)+Q(z) ¢ P(z)—-2Q(z) d P(z)Q(x)
2 If f(x)=22—2+2 and g(z)=23—3x+5, findin simplest form:
a f(z)+g(x) b g(z)— f(x) ¢ 2f(x)+3g(z)
d g(z)+zf(x) e f(z)g() f [f(2))?
3 Expand and simplify:
a (22 -2r+3)2z+1) b (z—1)*(2*+3z—2) c (z+2)?°
d (227 —x+ 3)? e (2z-1)* f 3z —2)2%2z+1)(x —4)

4 Find the following products:

a (222 -3z+5)3z—-1) b (42 —z +2)(2x +5)
¢ (222 +3x+2)(5—1x) d (z—-2)%2x+1)
e (z2-3x+2)(222 +4z-1) f (322 — 2z +2)(52? + 2z — 3)
g (22 —z2+3)? h (222 +x —4)?
i (2z+5)° j (2 +22-2)?
Discussion

Suppose f(z) is a polynomial of degree m, and g(z) is a polynomial of degree n.

What is the degree of:
o f(z)+g(x) * 5f(x) o [f@)? o fx)g(x)?

DIVISION OF POLYNOMIALS

The division of polynomials is only useful if we divide a polynomial of degree n by another of degree n or
less.

Division by linears

Consider (222 + 3z +4)(z+2) + 7.

If we expand this expression we obtain (222 + 3z +4)(z + 2) + 7 = 223 + 722 + 10z + 15.

Dividing both sides by (z + 2), we obtain The division of polynomials is not required for

the syllabus, but is useful for understanding

3 2 2
x° + 727 +10z+15 (227 +3z+4)(@+2)+7 the Remainder and Factor theorems.

x+ 2 xr+ 2
_ (222 43z +4)(x +2) 7 \ ks
T+2 T+2 v
=202 +3x+4+ % where x +2 is the divisor,
xr

<=4

222 + 3z +4 s the quotient,
and 7 is the remainder.
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If P(z) isdivided by axz+0b untila constant remainder R is obtained, then

P(x) R
a:c+b_Q(x>+ax+b

where ax +b is the divisor, D(z),
Q(z) is the quotient,
and R is the remainder.

Notice that P(z) = Q(z) x (ax +b) + R.

Division algorithm

We can divide a polynomial by another polynomial using an algorithm similar to that used for division of
whole numbers:

Step 1:  What do we multiply x by to get 2z:3?

The answer is 222, 2z° + 3z +4
and 222(z 4 2) = 22° + 422, z+2 | 23 +72+10c+15
— 3 2
- > — (2z° +4z*)
Step 2:  Subtract 223 + 4x? from 223 + Tx2. 322 + 10z
The answer is 3z2. — (32% + 61)
Step 3:  Bring down the 10z to obtain 3z? + 10z. 4z + 15
Return to Step I with the question: — (4z +8)
“What must we multiply x by to get 3227”7 7

The answer is 3z, and 3z(z +2) = 322 + 62

We continue the process until we are left with a constant.

3 2
So, X AT HI0rHIS g0 gy gy T
r+2 T +2
Example 4 «) Self Tutor

23— 22 -3z -5

Find the quotient and remainder for 3
P

Hence write 22 — 22 —3x — 5 in the form Q(z) x (z —3) + R.

2 +2x+3
m—3| 2 — 22 —-3z-5
— (2% — 32?) l
222 — 3z
_ 2 Check your answer by

(2 6z) [ expanding the RHS. ]

3z — 5
— (32 —-9) The quotient is 22 + 2x + 3
4 and the remainder is 4.

3 2

2 —x“ —3x—5 4

———x2+2x+3—|——
xr—3 r—3

23— 2% -3z —5= (2> 4+ 22+ 3)(x — 3) +4.
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Example 5 %) Self Tutor

24+ 222 -1
x4+ 3

Perform the division

Hence write 2% + 222 — 1 in the form Q(x) x (z + 3) + R.

22— 322 + 11z — 33

33—|—3| zt 402 + 222+ 0z — 1
— (z* + 32%) l
— 323 4 222
— (=323 — 92?)
112? + Oz
— (112* + 332)
—33x—1
— (=332 —99)
98
z* 4222 —1 98

=% 322 + 11z — 33 +
x+3 xr+3

ot 4202 — 1= (2% — 322 + 112 — 33)(z + 3) + 98

EXERCISE 6A.2

Notice the insertion
of 0z® and Oz.

1 Find the quotient and remainder for the following, and hence write the division in the form

P(z) = Q(z) D(z) + R, where D(z) is the divisor.

x2+2m—3 b a:2—5x+1
T+ 2 r—1

2 Perform the following divisions, and hence write the division in the form

P(z) = Q(z) D(z) + R.

a 22 —3z+6 b z2 +4z — 11
x—4 xr+3
d 223 + 322 — 3z — 2 e 323 + 1122 + 8z + 7
2z +1 3z — 1

3 Perform the divisions:

2 2
T 5 2 3
a -+ b x< + 3x
r — 2 r+1
d w3+2m2—5m+2 223 —

e
r—1 T+ 4

223 + 622 — 4z + 3

x—2
202 — Tz +2
T — 2
2z4—m3—x2+7x+4
2r + 3
322 + 20 —5
T+ 2
m3+w2—5
T —2
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DIVISION BY QUADRATICS

As with division by linears, we can use the division algorithm to divide polynomials by quadratics. The
division process stops when the remainder has degree less than that of the divisor, so

If P(x) isdivided by az?+bx+c then
P
__P@ =Q(x) + _eetS where ax? +bx +c is the divisor,
ax? +bxr+c ax?+bxr+c

Q(z) is the quotient,
and ex + f is the remainder.

The remainder will be linear if e # 0, and constant if e = 0.

Example 6

o) Self Tutor

Find the quotient and remainder for

Hence write z* + 423 —z+ 1

2 4+ 544
x2—x—|—1| ot 42 4022 — 241
—(a* = 2*+ 2%) |
5x3 — 2% — x
— (5a® — bx? + 5x)
4a% — 6z + 1
— (422 — 42+ 4)
—2x—3
EXERCISE 6A.3
1 Find the quotient and remainder for:
3+ 222 42 -3 322 —
224+ 41 2 —1

:1:4+4a:3—m+1
2 —z+1

in the form Q(z) x (2? —x + 1) + R(z).

The quotient is 2% + 5x + 4
and the remainder is —2z — 3.
44— +1
=2 +5r+4) (2> —x+1)—22 -3

3$3+$—1 x—4
x2+1 2422 —1

2 Carry out the following divisions and also write each in the form P(z) = Q(x) D(z) + R(x):

2 —z+1 b x3

2 +z+1 x2 4+ 2

23:3—334-6 e x4
(z —1)2 (z +1)?

:c4+3a:2+3271
2 —z+1
r4—2m3+x+5
(x —1)(z+2)

3 Suppose P(z) = (z—2)(z*+2x+3)+7. Find the quotient and remainder when P(z) is divided

by = —2.

4 Suppose f(z) = (z—1)(z+2)(2® — 3z +5) + 15 — 10x.

f(x) is divided by z? +x — 2.

Find the quotient and remainder when
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11 [ZERGS, ROOTS, AND FACTORS

A zero of a polynomial is a value of the variable which makes the polynomial equal to zero.

« is a zero of polynomial P(z) < P(«a) =0.
The roots of a polynomial equation are the solutions to the equation.
« is a root (or solution) of P(z) =0 < P(a) =0.

The roots of P(x) =0 are the zeros of P(z) and the z-intercepts of the graph of y = P(x).

Consider P(x) = z® +22° —3x — 10 An equation has roots.
P(2) = 2% + 2(2)2 —-3(2)-10 A polynomial has zeros.
=8+8—-6-10

This tellsus: o 2is a zero of ® 4222 — 3z — 10
e 2isarootof x%+22%—-3z—-10=0
e the graph of y = 2% + 222 — 3z — 10 has the z-intercept 2.
If P(z)=(x+1)(2z—1)(z+2), then (x+1), (2o —1), and (z+ 2) are its linear factors.

Likewise P(z) = (z+3)?(2z +3) has been factorised into 3 linear factors, one of which is repeated.

x — « is a factor of the polynomial P(x) < there exists a polynomial Q(z)
such that P(z) = (z — a)Q(z).

Example 7 ) Self Tutor
Find the zeros of:
a z2—6z+2 b z°—5z
a We wish to find x such that b We wish to find x such that
2 —6x4+2=0 23— 52 =0
64 /36— 4(1)(2) ooz =5)=0
r=—— "~
2 ooz +VE)(z—V5) =0
- xzﬁizm s, x=0 or :t\/g
. 64277 The zeros are —+/5, 0, and /5.
T2
L ox=3+V7

The zeros are 3 —+/7 and 3+ /7.
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EXERCISE 6B.1
1 Find the zeros of:
a 222 -5z —12 b z2+4+6zx—1 c 22—-10x+6
d 23 —4z e 25— 1lx f 2*—622+38
2 Find the roots of:
a 57%=3r+2 b (2z+1)(22-3)=0 ¢c Bx—1(@?>+x—-6)=0
d —2z(zx>-2x-2)=0 e =Tz f 2t =722-10
Example 8 ) Self Tutor
Factorise:
a 223 +52%2 -3z b 2244z -1
—4 + 16 —4(1)(—1
a 223 + 522 — 3z b 2?+4z—1 is zero when x = 5 (1)
_ 2 _
= x(22° + 5z — 3) 443
=z(2z —1)(z + 3) =
_ —4+2V5
o 2
r=—-2+ \/_

P +dr—1=(z—[- 2—1—\/_]) —[-2-5))
=(z+2-V5)(z+2+ V5)

3 Find the linear factors of:
a 222 —Tzr—15 b z3— 1122+ 28z c 22—6x+3
d 23 +222 —4x e 6z —2%2—-2z f 2t —622+5

4 If P(z)=a(zx—a)(z—p)(x—=) then a, 8, and v are its zeros.
Verify this statement by finding P(«), P(3), and P(y).

Example 9 ) Self Tutor

Find a/l cubic polynomials with zeros % and —3 4+ /2.

The zeros —3++/2 have sum=-3+v2-3—-v2=-6 and
product = (=3 + v2)(—=3 — v2) =7
they come from the quadratic factor 2% + 6z + 7

% comes from the linear factor 2x — 1.

P(z) =a(2z —1)(z> + 62 +7), a#0.

5 Find all cubic polynomials with zeros:

a -3,4,5 b +2 3 c 3, 1++5 d -1, —2+.2
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Example 10 %) Self Tutor

Find all quartic polynomials with zeros 2, —%, and —1 ++/5.

The zeros —1++/5 have sum=-14+v5-1-+v5=-2 and
product = (—1 +V/5)(—=1 —/5) = —4
they come from the quadratic factor 22 4 2z — 4.

The zeros 2 and —% come from the linear factors x — 2 and 3z + 1.

P(z)=a(z —2)(3z +1)(z? + 22 — 4), a#0.

6 Find all quartic polynomials with zeros of:
a +1, £12 b 2, - V3 c -3, 1, 1£V2 d 245, —2+7

POLYNOMIAL EQUALITY

Two polynomials are equal if and only if they have the same degree (order), and corresponding terms
have equal coefficients.

If we know that two polynomials are equal then we can equate coefficients to find unknown coefficients.

For example, if 223+ 322 — 42 +6 = az® + bx? + cx +d, where a, b, c,d € R, then
a=2, b=3, ¢c=-4, and d=6.

Example 11 ) Self Tutor

Find constants a, b, and ¢ given that:

623 + 722 — 192 + 7= (22 — 1)(az® + bz +¢) for all z.

62> + 72* — 192 +7 = (2z — 1)(az® + bx +c)

623 + T2* — 192 + 7 = 2ax® + 2bx? + 2cx — ax? —bx — ¢

62> 4+ 72? — 192 + 7 = 2az® + (2b — a)2® 4+ (2c — b)x — ¢
Since this is true for all z, we equate coefficients:

2a =6 2b—a="7 2c—b=-19 and 7T=—c

——

——
23 s 22 s s constants

a=3 and c¢= -7 andconsequently 2b—3=7 and —-14-—-b=-19

b=5

in both equations

So, a=3, b=5, and c=-T.
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Example 12 ) Self Tutor

+az’ + abz® + 3az than there are unknowns,
+ 3224+ 3b2+9 we must check that any
4 4 3 2 solutions fit all equations.
22 +9=2"4+(a+b)z" + (ab+6)z" + (3a+3b)z+9 forall z If they do not, there are
a+b=0 .. {23 st L no solutions. )
Equating coefficients gives ab+6=0 .. Q) {%s}

From (1) and (3) we see that b= —a

Find constants @ and b if 2%+ 9= (22 + az + 3)(22 + bz +3) forall z.

2 +9=(2"+az+3)(2* +bz+3) forall 2
224 9=2" 4023 + 322

When simultaneously
solving more equations

3a4+3b=0 ..(3) {zs}

in(2), a(—a)+6=0
a* =6

a==+v6 andso b= TFV6
a=+V6, b=—V6 or a=-v6, b=+6

EXERCISE 6B.2

1

2

()

Find constants a, b, and ¢ given that:
a 202 +4r+5=az?+ 20— 6z +c forallz
b 223 -22+6=(z—-1)>2Q2z+a)+br+c foralz
¢ 623 — 132>+ Tx+4= 3z +1)(az? + bz +¢) for all .
Find constants @ and b if:
a 2 +4=(22+az+2)(22+bz+2) forall 2
b 22 +523+422 + 7246 = (22 +az +2)(22° + bz +3) forall z.

a Given that 2+ 922 + 11z — 21 = (2 + 3)(ax?® + bx +¢), find the values of a, b, and c.
b Hence, fully factorise x> + 922 + 11z — 21.
a Given that 43 4+ 1222 + 32 — 5 = (22 — 1)(p2® + gz +r), find the values of p, ¢, and r.
b Hence, find the solutions to 423 + 1222 + 3z — 5 = 0.
a Giventhat 3z% + 1022 — 7Tz +4 = (z +4)(ax? + bz +c), find the values of a, b, and c.
b Hence, show that 3x3 + 1022 — 7x +4 has only one real zero.

Suppose  3z3 + kx? — Tz — 2 = (3x + 2)(ax? + bx + ¢).
a Find the values of a, b, ¢, and k.
b Hence, find the roots of 3z° + kz? — 72 — 2 = 0.

Find real numbers a and b such that z* — 42% + 8z — 4 = (22 + az + 2)(z? + bz — 2).
Hence, find the real roots of % + 8z = 422 + 4.

-3
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Example 13 ) Self Tutor

x+3 is a factor of P(z) =%+ az? —7r+6. Find a € R and the other factors.

Since x + 3 is a factor, The coefficient of This must be 2 so the
23is 1x1=1 constant termis 3 X 2 =06

¥ +ax? —Tr+6=(r+3)(2> +bxr+2) for some constant b
=23+ ba® + 2z
+ 32” + 3bz + 6
=23+ (b+3)2® +(3b+2)z+6

Equating coefficients gives 3b+2=—-7 and a=0+3
b=-3 and a=0

P(x) = (z +3)(z* — 32+ 2)
=(z+3)(z—-1)(z—2)

The other factors are (z — 1) and (x — 2).

8 2z —3 isafactorof 22%+3z2+ax+3. Find a € R and all zeros of the cubic.

Example 14 ) Self Tutor

2z +3 and z — 1 are factors of 2z* + az® — 322 + bz + 3.

Find constants a and b and all zeros of the polynomial.

Since 2z +3 and x — 1 are factors, The coefficient of z* This must be —1 so the constant
is 2x1x1=2 termis 3 x —1x —1=3

22% 4 ax® —32° + b+ 3= (22 +3)(x — 1)(2® +cx — 1)  for some c
= (222 + 2 —3)(2® +cx — 1)
= 22% 4 2ca® — 222
+ 24— =z
—32% — 3cr +3
=22 + (2c+ )2 + (¢ = 5)x? + (-1 —3c)z + 3

Equating coefficients gives 2c+1=a, c—5=-3, and —-1—-3c=0
c=2
a=5 and b= -7
P(z) = 2z + 3)(z — 1)(z? + 2z — 1)

—24 /4 —4(1)(-1)
2

Now 242z —1 has zeros

:_Zi;ﬁ:—li\/i

P(x) has zeros —3, 1, and —14+/2.

PR
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9 2r+1 and z—2 are factors of P(x) = 2x* + az® + ba?® + 18z + 8.
a Find a and b. b Hence, solve P(x)=0.

10 22 +322 — 9z +¢, ¢ € R, has two identical linear factors. Prove that ¢ is either 5 or —27, and
factorise the cubic into linear factors in each case.

C _ THEOREM

Consider the cubic polynomial =23 4+ 522 — 11z + 3.
If we divide P(z) by x —2, we find that

o remainder

3 2
x° + bx —11r+3
2+7:c+3+
T —2 —2

So, when P(z) is divided by x — 2, the remainder is 9.

Notice also that P(2) =8+20—22+3
=9, which is the remainder.

By considering other examples like the one above, we formulate the Remainder theorem.

The Remainder Theorem

When a polynomial P(z) is divided by = —k until a constant remainder R
is obtained, then R = P(k).

Proof: By the division algorithm, P(z) = Q(z)(z —k)+ R
Letting =k, P(k)=Q(k)*x0+R
. Pkk)=R

When using the Remainder theorem, it is important to realise that the following statements are equivalent:
e Plx)=(rx—k)Q(z)+R
e P(k)=R

e P(x) divided by x —k leaves a remainder of R.

Example 15 ) Self Tutor

Use the Remainder theorem to find the remainder when z* — 323 + 2 — 4 is divided by x + 2.

If P(x)=2%—323+x—4, then

P(—2) = (-2)* = 3(—2)> + (-2) — 4 The Remainder theorem
allows us to find a

=16+24-2-4 remainder without having "‘
=34 to perform the division. v
when % —323+ 2 —4 isdivided by x+ 2,

the remainder is 34. {Remainder theorem} "?J
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Example 16 ») Self Tutor
When 223 + 22% + ax +b is divided by z + 3, the remainder is —11.
When the same polynomial is divided by x — 2, the remainder is 9.
Find a and b.
Let P(z)=2x>+2z® +azx+b

Now P(-3)=-11 and P(2)=9 {Remainder theorem}
So, 2(-3)*+2(-3)*+a(-3)+b=-11

—54+18—-3a+b=-11

—3a+b=25 .. (1)
and 2(2)°+2(2)°+a(2)+b=9
16+84+2a+b=9
S 2a+b=-15 ... (2)
Solving simultaneously: 3a —b=—25 {—1x (1)}
2a+b=-15 {(2)}
Adding, 5a =—40
Loa=-—8
Substituting a = —8 in (2) gives 2(—8)+ b= —15
b =
EXERCISE 6C
1 For P(x) a real polynomial, write two equivalent statements for each of:

a If P(2)=7, then ...
b If P(z)=Q(x)(x+3)—8, then ...
¢ If P(z) divided by x —5 has a remainder of 11 then ......

Without performing division, find the remainder when:

a 23+222 -7r+8 isdividedby z —1

b 22%+ 2% -5+ 11 isdivided by =+ 3

¢ z* —22243x—1 isdivided by =+ 2.
Use the Remainder theorem to find the remainder when 23 — 22 — 3z — 5 is divided by x — 3.
Check that your answer is the same as when this long division was performed on page 159.
Find a € R such that:

a when 2% —2zx+a isdivided by x —2, the remainder is 7

b when 23+ 2%+ ax—5 isdividedby x4+ 1, the remainder is —8.
When 23 4222 +ax +b isdividedby = —1 the remainder is 4, and when divided by z 42 the
remainder is 16. Find a and b.

When 23 +422 +ax+b is divided by 2 —2 the remainder is 20, and when divided by = +5 the
remainder is 6. Find a and b.
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7 Consider f(z) =22%+az®> —3z+b. When f(z) is dividedby z+ 1, the remainder is 7. When
f(z) is divided by x — 2, the remainder is 28. Find the remainder when f(z) is divided by =+ 3.

8 a Suppose a polynomial P(z) is divided by 2z — 1 until a constant remainder R is obtained.

Show that R = P(3).

Hint: P(z) = Q(z)(2z — 1)+ R.

b Find the remainder when:
i 422 — 10z +1 isdivided by 2z —1 ii 22% — 522+ 8 is divided by 2z —1

iii 423+ 7z —3 is divided by 2z + 1.

9 When 22°+ax?+bx+4 isdividedby x+ 1 the remainder is —5, and when divided by 2z — 1
the remainder is 10. Find a and b.

10 When P(z) is divided by 2% —3z+2 the remainderis 4z — 7.
Find the remainder when P(z) is divided by: a z—1 b z-—2.

| [ THE FACTOR THEOREM

For any polynomial P(z), kis a zero of P(z) < x —k is a factor of P(z).

Proof: k is a zero of P(z) < P(k) =0 {definition of a zero}
< R=0 {Remainder theorem}
< P(z) = Q(z)(z — k) {division algorithm}

<z —k is afactor of P(z)  {definition of a factor}

The Factor theorem says that if 2 is a zero of P(z) then z —2 is a factor of P(z), and vice versa.

We can use the Factor theorem to determine whether x — k is a factor of a polynomial, without having to
perform the long division.

Example 17 ) Self Tutor

Determine whether:
a z—2 isa factorof z®+322—13z+6 b z+3 isa factorof z3—8x+7.

a Let Px)=2%+32>-132+6
P(2) = (2> +3(2)* - 13(2) + 6
=8+12-26+6
=0
Since P(2) =0, x—2 isa factor of °+ 32% — 13z +6. {Factor theorem}
b Let P(x)=2° -8z +7
P(—3)=(-3)%—8(=3) +7

When 22 — 8z + 7

=—2T+24+7 is divided by & + 3,
=4 a remainder of 4
Since P(-3)#0, x+3 isnota is left over.

factor of % — 8z + 7. {Factor theorem}
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Example 18 %) Self Tutor

x —2 is a factor of P(z) = 2® + k2% — 3z + 6.
Find k, and write P(z) as a product of linear factors.
Since x —2 is a factor, P(2) =0 {Factor theorem}

(2 + k(2 -3(2)+6=0

. 844k=0
k=2
The coefficient of The constant term

23is 1x1=1 is —2x-3=6

So, P(z)=a%—22">-32x+6=(z—2)(z*+bx—3)
=23+ (b—-2)2* +(-26—-3)xz+6

Example 19 ) Self Tutor

2z —1 is a factor of f(z) = 42® —42®+azx+b, and the remainder

when f(x)

20 —1 isa

is divided by = —1 is —1. Find the values of a and b.

factor of f(z), so f(3)=0
2

then f(3) = 0.

. 4(%)3 - 4(%) + a(%) +b6=0 [If 2z — 1 is a factor of f(x),]

A1) —4(1)? +a(l) + b= -1

Solving simultaneously: —a—2b=-1 {-2x(1)}

la+b=1 ..

Also, f(1)=-1 {Remainder theorem}

Catb=-1 .. (2

a+b=-1 {2}
Adding, —b=-2
. b=2 and a=-3

EXERCISE 6D
1 Use the Factor theorem to determine whether:
a z—1 isafactor of 423 — 722 +5zx—2 b z—3 isafactorof z*—z%—422—-15
¢ x+2 isafactor of 3z 4+ 522 — 6z —8 d z+4 isa factor of 2%+ 622 + 4z + 16.
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2

10

a Find c given that x + 1 is a factor of 523 — 322 + cz + 10.
b Find c given that = — 3 is a factor of 2% — 223 + ca?® — 4z + 3.
¢ Find b given that x + 2 is a factor of % 4 bx® — 223 — 52 + 6.
r+2 is a factor of P(z) = 223 + 2% + kx — 4.
Find %, and hence write P(x) as a product of linear factors.
x —3 is a factor of P(z) = 323 + ka? — 5x + 6.
a Find k. b Write P(z) inthe form P(z) = (z — 3)(az? + bz +¢).
¢ Find all solutions to P(x) = 0.
22% + ax? +bx +5 has factors z —1 and z+5. Find a and b.

z —2 is a factor of f(z) =123+ ax? — 11z +b. The remainder when f(z) is divided by z+1 is
15. Find @ and b.

x + 3 is a factor of P(x) = 22% + 92% + ax +b. When P(x) is divided by =+ 4, the remainder
is —18.

Find a and .

Find the remainder when P(z) is divided by = — 2.

Write P(z) in the form P(z) = (z + 3)(pz? + qx + 7).

Find the zeros of P(x).

e 6 T 9

2z — 1 is a factor of P(z) = 22® 4+ az? —8x +b. When P(xz) is divided by z —1, the remainder
is 3.
a Find a and b.
b Find the irrational roots of P(x) = 0, giving your answer in the form z = p £ ,/g where
p,qE L.

a Consider P(x)=12%—a® where a is real.
i Find P(a). What is the significance of this result?

3 3

ii Factorise z° —a” as the product of a real linear and a quadratic factor.

b Now consider P(z)= 2%+ a3, where a is real.
i Find P(—a). What is the significance of this result?
ii Factorise 2°+a® as the product of a real linear and a quadratic factor.

Find the real number a such that (z —1—a) is a factor of P(z) = 2® — 3ax — 9.

In Discovery 4 in Chapter 3 on page 97, we considered the sum and products of roots of a quadratic.
In particular, we saw that

(x —a)(x—B) =22 - (a+ B)x + ab.

If we perform a similar expansion for a cubic, we find that

(z—a)(@—PF)(z—7) =2" - (a+ B+7)2" + (af + By + ya)z — afy.

In both cases, the product of the roots has the same size as the constant term in the expanded polynomial.
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If the leading coefficient of the polynomial # 1, then we need to multiply by this as well:

a(w — a)(@ — B)(x — ) = aa® — a(a + B +)a? + a(af + By +7a)z — aafy.

If you think a cubic equation has integer roots, try to find them by factorising the constant term.

Example 20 ) Self Tutor

Solve for z: 3 — 31z — 30 =0.

Let P(x) = z® — 31z — 30.
The constant term is —30, so the product of the roots is 30.

Since 30 =5 x 3 x 2 x 1, likely integer roots are +1, +2, +3, £5. They could also be 46 since
2 x 3 =06, and so on.

Now P(1) =—60, so 1 is not a root.
But P(—1) =0, so —1isaroot,and (z+ 1) is a factor of P(z).

The coefficient of The constant term

#3is 1x1=1 is 1x-30=-30
So, P(z)=a3+02% — 31z — 30 = (z + 1)(2* + bz — 30)

= 2%+ (b+1)2* + (b — 30)z — 30
Equating 2%s: b+1=0
b=-1
Hence P(z) = (z+ 1)(2* — z — 30)
= (z+1)(z +5)(z - 6)

the solutions are —1, —5, and 6.

Note that this method only works for those cubics with all integer roots.

EXERCISE 6E
1 Solve for z:
a 22 —622+1lz—-6=0 b z3—-3224+4=0 c 3+22—x—-2=0
d 22 -622+52+12=0 e 23 +522 162 -80=0 f 2%+ 1322 +552+75=0

2 Solve for x:
a 223 —622—8x+24=0 b 223 —222 —48:—72=0 c 33— 2422 — 150 +252=0

Take out a common
factor first!
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Discussion

Consider the general cubic p(z) = ax® + bx®> +cx +d, a, b, c, d € R.

What happens to p(x) if z gets:

e very large and positive e very large and negative?

What does this tell you about the number of solutions that p(z) =0 may have?

Review set 6A

1

10

11

Given p(z)=5z%2—-x+4 and gq(z)=322+T7z—1, find:

a p(z) +q(x) b 2p(z) - q() ¢ p(z)q(x)
Find the quotient and remainder of:
222 + 11z + 18 b @3 — 6x2 + 10z — 9
z+3 ® =2

Find the zeros of:
a 3z2+2x—8 b z?+8x+11

a Given that 2® + 2% — 32+ 9 = (2 + 3)(az?® + bx + ¢), find the values of a, b, and c.
b Show that z* + 2% —32+9 has only one real zero.

Use the Remainder theorem to find the remainder when:
a 3 —422 +52x—1 isdividledby = —2
b 222+ 6x? — 7z + 12 is divided by = + 5.

Use the Factor theorem to determine whether:

a z+1 isa factor of 2z* — 922 — 6z —1
b z—3 isa factor of z*— 22% — 422 + 5z — 6.

222 + kx — 5 has remainder 3 when divided by x + 4. Find k.

ax® + 52% — x + b has remainder 7 when divided by = — 1, and remainder —11 when divided
by =+ 2. Find a and b.

Find c given that x — 2 is a factor of % — 2% 4 cx® — 722 4 5z — 6.

z—4 is a factor of f(z) = 23+ 222 + az +b, and when f(z) is divided by z+ 2 the
remainder is 18.
a Find a and b. b Find all zeros of f(x).

Solve for z: 3 —22— 17z —15=0

Review set 6B

1

Expand and simplify:
a (323 + 2z —5)(4z - 3) b (222 —x+3)2
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2 Carry out the following divisions:

3 3

T

b ¥
T2 (z+2)(x +3)

Find all cubic polynomials with zeros %, 1+ /5.
If f(z) =a2®>—322—-92+0b has (z — k)?> as a factor, show that there are two possible
values of k. For each of these two values of &, find the corresponding value for b, and hence solve

f(z)=0.
5 Find the remainder when:
a z3—-522+9 isdividedby z —2 b 423+ 7x —11 is divided by 2z — 1.

6 When f(z)=22%—22+axr—4 isdividedby z — 3, the remainder is 56.
a Find a. b Find the remainder when f(x) is divided by « + 1.
7 a Use the Factor theorem to show that = — 2 is a factor of 2% — 13z + 18.
Write 3 — 13z + 18 in the form (x — 2)(az® + bx +¢), where a, b, c € Z.
¢ Find the real roots of z*® + 18 = 13z.
x—2 and x+3 are factors of ax® —3x2 — 11z +b. Find a and b.
z+1 is a factor of f(z) = 2 +52% + kx + 4. Find k, and the zeros of f(z).

10 2z —1 is a factor of f(z) =223 — 922 + az +b, and when f(z) is dividedby z —1 the
remainder is —15.

a Find a and 0. b Write f(x) as a product of linear factors.

11 Solve for z: 223 — 222 — 28z +48 =0
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Opening problem

This table shows the value $V" of Doug’s t (years) 1 3 5 8 10
father’s car ¢ fi, hase.
athel’s cat t yeats atfer purchase V (dollars) | 42900 | 28000 | 18500 | 9800 | 6400

Doug is trying to work out the equation connecting V' AV
and t. When he plots the values on a graph, the result 50000
is a curve: 40000 *
30000 3
20000 .
10000 ]

O 12 3 45 6 7 8 9101

Doug’s father suggests that he plots 1g V" against ¢. gV

When Doug does this, the result is a straight line: ‘\‘\\‘*

t 1 3 ) 8 10
lgV | 4.63 | 4.45 | 4.27 | 3.99 | 3.81

— N W o Ot

Oof 1 2 3 45 6 7 8 9 10 ¢

Things to think about:
a Is it easier to find the equation of a curve or a straight line?
b How can Doug use the equation of the straight line to determine the relationship between V' and ¢?

BACKGROUND KNOWLEDGE

You should be familiar with the following facts involving points and lines on the coordinate plane:

Distance between two points

The distance between A(z1, y1) and B(xa, y2) is

d=/les =212+ (2 — 1) . ey

A(z1,91)

Midpoint

IfAis (z1,y1) and Bis (w2, y2), A(z1,91)
then the midpoint of AB is

M(xl +SC2’ U1 erQ)‘
2 2

B(xz2,12)
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Gradient

The gradient of a line passing through

A(z1, y1) and B(zz, y2) is e B(x2, y2)

ystep Y2 — 4

x-step Xy — T1 {y-step

A(z1,91)

Gradients of parallel and perpendicular lines

e If two lines are parallel, then their gradients are
equal.

equal
gradients

e Iftwo lines are perpendicular, then their gradients
are negative reciprocals.

. . . dient
If the gradient of one line is m, then the gradient St

of the other line is —i.
m

: 1
gradient —-

The equation of a line is an equation which connects the z and y values for
every point on the line.

The equation of a straight line can be written in:

A line with equation
e gradient-intercept form y=mx+c, or y=mz + c
e general form Ax+ By=D. has gradient m
and y-intercept c. 0
I
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FINDING THE EQUATION OF A LINE

In order to find the equation of a line, we need to know some information.

Suppose we know the gradient of the line is 2, and that the line Ay

passes through (4, 1). gradient =2

We suppose (z, y) is any point on the line. (.9)

The gradient between (4, 1) and (z, y) is y—_i, and this
-

gradient must equal 2.

. |

r—4 O
y—1=2(x—4) {multiplying both sides by (z —4)}
y—1=2x—-38 {expanding the brackets}

y=22c-7 {adding 1 to both sides}

So, y=1l_o < /

This is the equation of the line in gradient-intercept form.

We can find the equation of a line if we know:
e its gradient and the coordinates of any point on the line, or
o the coordinates of two distinct points on the line.

If a straight line has gradient m and passes through the point (x1, y1)
Y=
r — I1

then its equation is =m or y—ys =m(zx—x).

We can rearrange this equation into either gradient-intercept or general form.

Example 1 ) Self Tutor

Find, in gradient-intercept form, the equation of the line through
(=1, 3) with a gradient of 5.

The equation of the line is y — 3 = 5(x — (—1))
y—3=5x+5
L y=>5bxr+8

Example 2 ) Self Tutor

Find, in general form, the equation of the line with gradient % which
passes through (5, —2).

The equation of the line is y — (—2) = 3(z —5)

4(y+2) =3(x —5H)
4y +8 =3z — 15
3z — 4y =23
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EXERCISE 7A.1

1 Find the gradient and y-intercept of the line with equation:

a y=3z+5 b y=4x-2 c y:%x%—%
d y=-Tr—-3 e yZﬂC;—Q £ y:8_35$

2 Find the equation of the line with:
a gradient 1 and y-intercept —2 b gradient —1 and y-intercept 4
¢ gradient 2 and y-intercept 0 d gradient —% and y-intercept 3.

3 Find, in gradient-intercept form, the equation of the line through:

a (2, —5) with gradient 4 b (-1, —2) with gradient —3
¢ (7, —3) with gradient —5 d (1,4) with gradient 1
e (—1,3) with gradient —3 f (2, 6) with gradient 0.

4 Find, in general form, the equation of the line through:

a (2,5) having gradient 2 b (-1, 4) having gradient 2
¢ (5,0) having gradient f% d (6, —2) having gradient f%
e (—3, —1) having gradient 4 f (5, —3) having gradient —2
€ (4, —5) having gradient —31 h (-7, —2) having gradient 6.
Example 3 ) Self Tutor

Find the equation of the line which passes through the points A(—1, 5) and B(2, 3).

3-5 2

The gradient of the line is =—=.
2—(-1) 3

We would get the same
Using point A, the equation is equation using point B.

5= —%(CE (-1 Try it for yourself.
3(y—5)=-2(x+1)
3y —156=—-2z—-2
20 4+ 3y =13

5 Find, in gradient-intercept form, the equation of the line which passes through the points:

a A2, 3) and B(4, 8) b A(0,3) and B(-1, 5)
¢ A(—1,-2) and B(4, —2) d C(-3,1) and D(2, 0)
e P(5, —1) and Q(-1, —2) f R(-1, —3) and S(—4, —1).

6 Find, in general form, the equation of the line which passes through:
a (0,1) and (3,2) b (1,4) and (0, —1) c (2,-1) and (-1, —4)
d (0, —-2) and (5, 2) e (3,2) and (-1,0) f (-1, —-1) and (2, —3).
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7 Consider the points A(2, 5) and B(—4, 2). Find:
a the distance between A and B
b the midpoint of AB
¢ the gradient of the line which passes through A and B
d the equation of the line which passes through A and B.

Example 4 ) Self Tutor
Find the equation of the line with graph:
a Ay b by
2,4
N (2,4)
1
=/ 0 = “ o) %
A ] (6’ _1)
a Two points on the line are (0, 1) b Two points on the line are (2, 4)
and (5, 4). and (6, —1).
_ . —1—-4
the gradient m = _g _[1) = % the gradient m = o —%
and the y-intercept ¢ = 1. Since we do not know the y-intercept

. 3 we use the general form.
The equation is y = tr+1 I 5
The equationis y —4 = —3(z — 2)
A(y—4)=-5(@x-2)
4y — 16 = =5z + 10

S5z + 4y = 26

{gradient-intercept form}

8 Find the equations of the illustrated lines:
a Wi b y c y

L Y
(3.3) (1, 5) %(3)
O (72’ 3) 1
-1 -«
/ ]

]Y
]Y

]Y

, 7

\j

d Ly e \uy f Ty
(_3’ 4\)\ D) _3 0O
- (0] - .
D —1

N 3\53 (4,-3)

A

8Y

sy
o
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Example 5 ) Self Tutor
Find th.e equation connecting (0,2) and (4, 8) lie on the straight line.
the variables.
. _8—=2 ¢ 3
7 the gradient m = T 1T and the
y-intercept ¢ = 2.
(4.8) : . . : .
In this case K is on the vertical axis and ¢ is on the
horizontal axis.
2 the equation is K = %t + 2.
- /o T
Y
9 Find the equation connecting the variables:
a b c
M \‘R b T
gradient % 2 < 0 2/ >
2 x
< - —1
D0 \ m /
0 b
(47 _3)
\ i A\
d Y e e f
. (10.2) ™
2
e
S0 iz b (0] 4\;2
A\ \
Example 6 ) Self Tutor

Consider the points A(—2, 5) and B(1, 3).
a Find the equation of the line.

A line perpendicular to AB, passes through B.

b Find the coordinates of the point where the line cuts the z-axis.

3-5
1-(=2)
the perpendicular line has gradient %,
and passes through B(1, 3).
its equationis y—3=3(z—1)

2(y—3) =3(z - 1)

20 —6 =3z -3
3x — 2y =-3

a The gradient of AB =

wlno

A(=2,5)s.

I¥ B(1,3)

¥

/O
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b The line cuts the z-axis when y =0
3z —2(0) = -3
Lo =-1

the line cuts the z-axis at (—1, 0).

10 Consider the points P(—3, —2) and Q(1, 6). A line perpendicular to PQ, passes through Q.
a Find the equation of the line.
b Find the coordinates of the point where the line cuts the z-axis.

11 Suppose A has coordinates (—7, 4) and B has coordinates (3, —2). A line parallel to AB, passes
through C(5, —1).
a Find the equation of the line.
b Find the coordinates of the point where the line cuts the y-axis.

12 Suppose P has coordinates (3, 8) and Q has coordinates (—5, 2). The line perpendicular to PQ and
passing through P, cuts the z-axis at R and the y-axis at S. Find the area of triangle ORS, where O is
the origin.

PERPENDICULAR BISECTORS

We have already seen that the midpoint M of the line segment AB
is the point on the line segment that is halfway between A and B.

Ae. perpendicular
The perpendicular bisector of AB is the line which is bisector of AB
perpendicular to AB, and which passes through its midpoint M.
ep
Example 7 ) Self Tutor

Find the equation of the perpendicular bisector of AB given A(—1, 2) and B(3, 4).

The midpoint M of AB is <_1 3 w)
B(3,4) 2 2
-+ BG, or M(L, 3).
. . 4-2 5
The gradient of AB is =5=3
o perpendicular 3-(=1)
A(=1,2) bisector of AB 2

the gradient of the perpendicular bisector is —7

{the negative reciprocal of %}
The equation of the perpendicular bisector is y —3 = —2(z — 1) {using M(1, 3)}
y—3=—-2x+2
y=-—-2x+5
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EXERCISE 7A.2
1 Consider the points P(—3, 7) and Q(1, —5). Find:
the distance between P and Q
the midpoint of PQ
the gradient of PQ
the equation of the perpendicular bisector of PQ.

b
c
d

2 Find the equation of the perpendicular bisector of AB given:

a A(3,-3) and B(1, —-1)
¢ A(3,1) and B(-3, 6)

b A(1L,3) and B(-3,5)
d A(4,—2) and B(4, 4).

3 Consider the points P(—1, 5) and Q(3, 7). The perpendicular bisector of PQ cuts the z-axis at R.
Find the area of triangle PQR.

[ INTERSECTION OF STRAIGHT LINES

To find where straight lines meet, we need to solve the equations of the lines simultancously.

Example 8 ») Self Tutor

Find where the line:

a y =2z —5 meets the line 4z + 3y =15
b z+ 3y =5 meets the line 2z — 5y = —12.
a Substituting y=2x—5 into 4z +3y =15 gives
4r + 32z —5) =15
4z 4+ 6x — 15 =15
10z = 30
=3 and y=23)—-5=1
The lines meet at (3, 1).
b z+3y=25, so x=5-—3y.
Substituting = =5—-3y into 2z —by = —12 gives
2(5—3y) —by=—12
10 — 6y — 5y = —12
—1ly = —22
y=2 and z=5-3(2)=-1
The lines meet at (—1, 2).
EXERCISE 7B

1 Find the intersection point of each pair of lines:

a y=4r—1 and 2z 4+y =5
¢ z+4y=7 and bxr —2y = —31

b y=9—22 and 42+ 3y =15
d 3r+y=-5 and 4z — Ty = 10.
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2 Line /; has equation y = 2z + 7. Line [ passes through (-7, 6) and (3, 0).
a Find the equation of [5.
b Find the intersection point of /; and ls.

3 Find the coordinates of X.

4 In the diagram alongside, a line has been drawn through C,
perpendicular to the line AB. The point of intersection of the B(4,4)
lines is X. Find: A(=5,1)
a the equation of AB
b the equation of CX

¢ the coordinates of X.

C(0> 74)
Example 9 ) Self Tutor
ABCD is a trapezium in which AB is parallel to DC, A(—4,6)
and ADC = 90°. Find:
a the coordinates of D D
b the area of the trapezium. B(1,1)

a Point D is the intersection of AD and DC.

The gradient of AB is 126 _ 5.
1- (4 5

DC also has gradient —1, and has equation y — (—6) = —1(z — 2)
L y+b=—x+2
y=—-z—4 .. (1)
AD is perpendicular to DC, so its gradient is 1, and its equationis  y —6 = 1(z — (—4))
y—6=x+4
y=z+10 ... (2)
Substituting (1) into (2) gives —z —4 =2+ 10
—2r =14
r=-7 and y=—(-7)—4=3
Dis (-7 3).
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b The length of AB = /(1 — —4)2 + (1 — 6)2 = /50 = 5v/2 units
)
The length of DC = /(2 — —7)2 + (=6 — 3)2 = V162 = 9v/2 units Area of trapezium
b
The length of AD = \/(—7 — —4)2 + (3 — 6)2 = V/18 = 3+/2 units = (a;r ) X h
*. the area of the trapezium = (M) X 3v/2 >
=7V2 x 3v2 ‘-b
J
= 42 units?
5 PQRS is a trapezium in which PQ is parallel to SR, and Q(2,5)
PSR = 90°. Find:
a the coordinates of S P(~2,3)
b the area of the trapezium.
R(6,2)
S
6 A(=3,10) Ay ABC is a triangle in which ABC = 90°, and C lies on the
x-axis. Find:
a the coordinates of C

B(3,6) b the area of the triangle.

0)

¥

C

v

7 A trapezium ABCD has vertices A(3, 0), B(—2, —5), C(—4, 1), and D. The side AD is parallel to

BC, and the side CD is perpendicular to BC. Find the area of the trapezium.

8 ABC is a triangle in which ABC = 90°, AC is parallel to Ay
the z-axis, M is the midpoint of AB, and N is the midpoint

of BC.
a Find the coordinates of:
i B ii C ifi N
b Show that MN is parallel to AC.

¢ Find the area of:
i trapezium AMNC il triangle ABC. v
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C STRAIGHT LINE

To find where a straight line intersects a curve, we first rearrange the equation of the line so that = or y is
the subject. We then substitute this expression for x or y into the equation of the curve.

While a straight line meets another straight line at most once, a straight line may meet a curve more than
once.

Example 10 %) Self Tutor

Find the points where the line = — 3y = 4 intersects the curve z2 + 32 = 34.

Substituting = =3y +4 into x?+y? =34 gives |

\y
(By+4) +y* =34
9y + 24y + 16 + > = 34 z? 417 =34
10y + 24y — 18 =0
5 z—3y=4
2(5y° +12y —9) =0
2(5y —3)(y+3) =0 = 0 £
Y= % or —3
When y=2, 2=32)+4=2
When y=-3, 2=3(-3)+4=-5 !
the line intersects the curve at (£, £) and (-5, —3).
Example 11 %) Self Tutor
Find the points where the line 2z + 3y = 5 intersects the curve 1 3_9
z Yy
If 22 +3y =25, then y = 5_32:6.
Substituting into 1 2o gives L = 32 =2
T Yy T —3 z
o9 _
T 5—2z
(5—2z) — 9z = 2z(5 — 2x) { x both sides by (5 — 2x)}
5—1lz = 10z — 42
42 =21z +5=0
(4 —1)(x—5)=0
r=gorb
5—2(3) 5—2(5) 5
When z=1, y= - =2, andwhen z=35, y= — =3

the line intersects the curve at (4, 3) and (5, —32).
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EXERCISE 7C
1 Find the points where the line = — 2y = 3 intersects the curve % 4 y? = 5.
2 The line = +y =7 meets the curve 22 + 32 =29 at A and B. Find the distance between A and B.

3 The line 2x+y =5 meets the curve z2+y* = 10 at P and Q. Find the equation of the perpendicular
bisector of PQ.

Find the points where the line = — 2y = 4 intersects the curve 322 +y% + zy + 3y = 8.

The line y = 2x+1 meets the curve x? +y? +zy+ 162 = 29 at P and Q. Find the distance between
P and Q.

6 The line 3z+y =1 intersects the curve 2%+ y? +5zy — 7Tz = —31 at A and B. Find the equation

of the perpendicular bisector of AB.
1

7 Find the points where the line « — 2y = 6 intersects the curve 11
z Yy

8 The line 3z + 2y = 12 intersects the curve 4 + 3 -3 atPand Q. Find the midpoint of PQ.
z Yy

LATIONSHIPS
FORM

Even if  and y are not linearly related, it is sometimes still possible to use a straight line graph to display
the relationship. We do this by changing the variables on the axes.

For example, consider the relationship y = 222 + 1. Ay
x and y are not linearly related, but 22 and y are linearly related (2,9)
since y = 2(z?) + 1.
y = 2(z%) Y2241
(1,3)
‘ 0,1) .
- o »
v
We can use a table of values to plot y against z2: Ay
1] 2 (4,9)
22| 0 1
Y 1 3 9
The graph of y against x? is a straight line with gradient 2 and (1,3)
y-intercept 1. . (o,1) X
“5 b
\J

Click on the icon to view a demonstration of how the two graphs are related. DEMO

Observe that for the graph of y against 22, the line terminates at (0, 1), since 22 >0 for ;Q
all . We need to be careful with the domain and range when we transform relationships.
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Example 12 ) Self Tutor
Find y in terms of z:
= Ay b Ay
(3,11) (8,5)
/ (4.2)
- . -t 0 >
— » L /o
\j \j

a The graph of y against z° is linear.

11—-5
=2, and

The gradient is

the y-intercept is 5.
the equation is y = 223 + 5.

b The graph of y against \/z is linear.

. . 5—2 3
The gradient is it

4
the equation is
y—2=3(\z -4
y—2=32V2-3

Example 13 %) Self Tutor
a Find y in terms of z. Wy
b Find y when z = 4. ‘ ,7)
/ (2,4)
0 7
A

a The graph of Y against x is linear.
xX

—4

The gradient is ;— =

", the equation is

b When z=4, y=
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EXERCISE 7D

1 Find y in terms of z:

a Ay b Ay ¢ by
2,5
6.5) (2.5)
(2,1)
2 .
7 T 0 zt
- O -
0 " _1 Vo (5,-2)
A\ A\ A
d Ay e y f y
(3,7)
(9,3) (2,8)
3,1
/ (1, 3)
) oY 1 (6,2)
- / l 5 ‘% 7
A\

2 For each of the following relations:
i find y in terms of x ii find the value of y when x = 3.
a

(4
[

ATy
(3,6) (6,10)
(1,4)
/ (3.5)
o Do) %

v 1
d A

e f
\/@ Ay
(7,5) 7
(5,1) (2,4)
- 2
3

(5,1)

]Y

]Y

©)

8l

o

sy

I 4
4
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Example 14 ) Self Tutor

Write y in terms of x, giving your answer in the form y

Mgy
y=a x 10°, where a, b€ Q. M
(3,3)

The graph of lgy against x is linear.

The gradient is 4-3 _ % In Chapter 5, we saw that a
63 linear relationship between

the equationis lgy — 3 = %( -3) lg y and z indicates an
loy—3=2Lr-1 exponential relationship
8y — 37 between y and x.
lgy =32 +2
1
y=103""? {if lgp =q then p =107}
1
=103" x 102

1
y =100 x 103”

3 a Find Igy in terms of x. bgy
b Write y in terms of z, giving your answer in the form (3,5)
y=a x 10°® where a, b€ Q.
(L1)
0 x
"

4 Write y in terms of x, giving your answer in the form
y=a x 10°®, where a, b€ Q.

5 Write y in terms of «, giving your answer in the form y = a x b*, where a, b € Q.
b y c y

a Al ] 1
gy (8,4) * gy gy
(1,3) (1,1g20)
lgh

0 T O 4\ T 0
Y (2,-2) Y Y

Y
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6 a Write y in terms of x, giving your answer in the form
y=a x 10®® where a, be Q.
b Find y when x = 6.

o %
A\
Example 15 «) Self Tutor
Write y in terms of x, giving your answer in lgy
the form y = a x 2°, where a, b € Q. (3,8)
- 0) (1’ 2) >
lgz

The graph of lgy against lgx is linear.

8_9 A linear relationship between
The gradient is P 3. lg y and lg = indicates a power
relationship between y and x.

the equationis lgy — 2 =3(lgx — 1)
lgy—2=31gx —3

lgy =3lgx —1

oo lgy =1ga® —1g 10

23
gy =1g <E)

_ 1.3
Yy=15 X

7 Consider the graph alongside.

Igy
a Write an equation for the line in the form lgy = mlgx+c.
b Hence write y in terms of x. (2,1)
o) 1g= T
(63 _1)
8 Write y in terms of z:
2 by b Yey ¢ Ygy
N (7,15.5)
(1,2)
(8,2) (3,7.5)
_ _ 0 3\ 1g= x _ .
VO lg z v /VO lg z
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9 a Write K in terms of ¢.
b Hence find K when t=0.

10

Graph A

(5,20)

3

sy

40

bg K

(1g81,1g 63)

Graph B
Mgy

“/0 g

A\

The relationship between x and y in Graph A can also be plotted as a straight line in Graph B. For the
straight line in Graph B, find the:

a gradient

intercept on the vertical axis.

3 _IONSHIPS FROM DATA

We have seen how the transformation of variables may allow us
to display a non-linear relationship using a straight line graph. It

is particularly useful to do this if we are trying to use a function
to model data.

Case study

‘1;?
Exponential, power, and logarithmic i
models can be transformed to '?J

straight line graphs.

Exponential growth and decay

Logarithms are particularly important in science. Many physical processes are modelled accurately by
exponential laws.

For example, the United Nations published the following data on world population:

Year | Population P (in billions) lg P Year | Population P (in billions) | lg P
1750 0.79 —0.236 1950 2.52 0.924
1800 0.98 —0.0202 1960 3.02 1.11
1850 1.26 0.231 1970 3.70 1.31
1900 1.65 0.501 1980 4.44 1.49
1910 1.75 0.560 1990 5.27 1.66
1920 1.86 0.621 1999 5.98 1.79
1930 2.07 0.728 2000 6.06 1.80
1940 2 30 0 833 2010 679 192
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The population data is presented on the graph below:

N

4 population P (billions)

exponential model
o4

“Best fit line”

year, &

1750 1800 1850 1900 1950

2000 2050

The “best fit line”, P = 0.0222z — 39.6, does not fit the data very well. Instead, we try to fit an

exponential curve of the form P = ae™”.

Taking the natural logarithm of both sides, we have In P = max + Ina, which is the equation of a

straight line.

We now plot In P against x:

254 n P

2

1.5

year, &

0 V=170 ‘/8:96/ 1850 1900 1950
—0 5" +

The equation of this “best fit line” is In P = —15.5 + 0.008 55z.

Using our model this means that Iny = —15.5+ 0.008 55z,
the data can be modelled by P = ¢~ 15-510.00855z

This is shown as a dashed line on the original graph. This is not a

perfect fit either, but is a considerable improvement on the original

straight line graph.

2000 2050

The “best fit line” is
not a perfect fit because
we are using real data.
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Example 16

o) Self Tutor

Consider this table of data connecting x and y:

Copy and complete the following table:

3.5 10 | 225 | 44

] |<

b Plot ¥ against 2, and draw a straight line through the points.
x

¢ Find y in terms of z.

a 72

16

Y
B

3.5

7.5

11

¢ The graph of g against 22 is linear.
T

Using the points (4, 5) and (16, 11),

the gradient is

the equation is

EXERCISE 7E

1 Consider this table of data connecting x and y:

-5

16 — 4

1

2

%xB + 3x

T

2

3

4

Y

2

11

26

47

a Copy and complete the following table:

.1?2

&)

2

Z
1

O 2 4 6 8 10 12 14 16 18

z% > 0 for all z.
% is undefined when = = 0.
.. the point on the vertical
axis is not included.

22 > 0 for all .

b Plot y against 22, and draw a straight line through the points.

¢ Find y in terms of x.
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2 This table shows experimental data values for = and y:

x| 1] 2 3 [ 4
y | 9 [990] 10097 12

Vz is only defined
for z > 0.

a Copy and complete the following table:

€
YV

b Plot y\/z against z, and draw a straight line through the points.

¢ Find y in terms of x.
d Find y when z = 16.

3 This table shows experimental values for = and y. z | 1 2 3 4
—1| 0 | 0.11 ] 0.12

It is known that = and y are related by the equation y = 24 where a and b are constants.
T

b
z2’

a Copy and complete the following table:

1
- L is not defined
- a8

when x = 0.
zy

b Plot xy against l, and draw a straight line through the points.
x

¢ Hence find a and b.
d Find y when z = 10.

4 This table shows values of  and y: T 2 4 6 8
524 | 5 | 5.45 | 6.12

a Copy and complete the following table: T\/T
yv@

b Plot y\/z against x\/z, and draw a straight line through the points.

¢ Find y in terms of x. d Find y when = =9.

5 The mass of bacteria in a culture is measured each day for 5 days.

t (days) 1 2 3 4 5
This experiment
M (grams) | 3.98 [ 6.31 | 10 | 15.85 | 25.12 [starts att — 0 days]
a Copy and complete the following table: N
t
lg M
b Plot lg M against ¢, and draw a straight line through the points.
¢ Find M in terms of ¢.
d Find the original mass of the bacteria.



196 Straight line graphs (Chapter 7)

Example 17 ) Self Tutor

This table shows experimental data values for x and y: sl 11 21314

By plotting a suitable straight line graph, show that y and z are related y |14 |10 | 10 | 11

by the equation y = ax + 2
x

way to transform the variables

N

If y=ax+ 2, then [ There may be more than one ]
x

zy =az>+b

if y and x are related in this way, then we should observe
a linear relationship between xy and 2.

2| 1| 4] 9|16
xy | 14120 | 30 | 44

The graph of zy against 22 is linear.

Using points (1, 14) and (4, 20),
— 14

the gradient is =2.
. . 2 $2
the equation is zy — 14 = 2(z* — 1) - B
O 2 4 6 g§ 10 12 14 16 18
ry — 14 =227 — 2 v
zy = 222 + 12

y=2+2  {a=2 b=12)
T

6 This table shows experimental values of x and y: x| 1| 2|3 4
1 (26|99 | 244

It is known that = and y are related by the equation y = ax>® + bx, where a and b are constants.

a A straight line graph is to be drawn to represent this information. If AN plotted on the vertical
axis, which variable should be plotted on the horizontal axis? ’

Draw the straight line graph.

Find the values of a and b.

d Find y when z =25.

(]

7 This table shows experimental values of x and y: x| 1 2 3 4
4 11171036 | 0

By plotting a suitable straight line graph, show that = and y are related by the equation y =

8e
+
Al
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8 A stone is dropped from the top of an 80 m high cliff. This
table shows the distance the stone has fallen at various times.

Time (t s) 1 1.7 2 2.7
Distance (D m) | 4.9 | 14.16 | 19.6 | 35.72

a By plotting a suitable straight line graph, show that
t and D are related by the equation D = a x t?, where
a and b are constants.

How far had the stone fallen after 3 seconds?

¢ How long did the stone take to hit the water?

Research Logarithmic scales in science

If your data ranges over many orders of magnitude, it can be difficult to compare or represent on a
graph.

For example, the Richter scale for earthquake measurement uses logarithms in base 10. An earthquake

measuring 6.0 on the Richter scale has a shaking amplitude 105~% = 100 times larger than one that
measures 4.0.

Research some other scientific scales that use logarithms to compress very large ranges into manageable
values. You may like to consider:

e the decibel scale for the loudness of sound

e the stellar magnitude scale for brightness of stars

e the pH scale for acidity and alkalinity

e counting f-stops for ratios of photographic exposure.

Review set 7A

1 Consider the points A(—1, 6) and B(5, 4). Find:
a the distance between A and B b the midpoint of AB
¢ the equation of the line through A and B.

2 Determine the equation of the illustrated line: y

(1,4)

3

" L

3 Explain why the vertical straight line in the plane cannot be written in gradient-intercept form
Yy = mx + c.

4 Suppose P has coordinates (—2, —3), and Q has coordinates (1, 3). A line perpendicular to PQ,
passes through Q.

a Find the equation of the line.
b Find the coordinates of the point where the line cuts the z-axis.
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5 Find the point of intersection of the lines * — 2y =5 and 4x + 3y = 9.

6 ABCD is a trapezium in which AB is parallel to DC, A(L,7)
and ADC = 90°. Find:
a the coordinates of D

b the area of the trapezium.

7 Find the points where the line 3z 4+ y = 1 intersects the curve z2 + y? = 29.

B(7,3)

C(8,-2)

8 The line = +y =5 meets the curve z? + y2 +3zy + 5z = 1 at P and Q. Find the equation of

the perpendicular bisector of PQ.

9 Consider two distinct points in the plane (ai, by) and (a2, b2) where a; # as.

straight line passing through them has equation:

b1 — by a1by —agby
= a5 +
a1 — as a1 —az

in gradient-intercept form

b (by —b2)x + (az — a1)y = asby — aibs in general form.

Show that the

10 a Write y in terms of z. zy
b Hence find y when z = 4. (4,10)
(2,4)
< Of \/%
11 Mgy Consider the graph alongside.
(10,6) a Write an equation for the line in the form
lgy =mlgz +c.
b Hence write y in terms of z.
(2,2)
0 IECL‘
v
12 This table shows experimental values of z and y: x| 1 2 3 4
8§ | 7.5 | 11.33 | 17.75
a Copy and complete the following table: x3
Y
b Plot xy against 23, and draw a straight line through the points.
¢ Find y in terms of z.
d Hence find y when z =T7.
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Review set 7B

1 Find the equation of the perpendicular bisector of AB given A(—2, 3) and B(4, 5).

2 The line x — 2y = 3 meets the curve 22 + 2y? — 2xy + 3z = 8 at P and Q. Find the distance
between P and Q.

3 a Write y in terms of x.

y
b Hence find y when z = 8. ¢
(1,3)
“0 g
T2
(43 _3)
v
4 Find the equation linking the variables in each graph:
a 7 b K
(7.7 3

oV

4

5 Find the coordinates of X.

6 Find, in general form, the equation of the line passing through (—5, —7) and (3, —2).

7 Consider this table of data connecting « and y: z | 1 2 3 4
25529813 |11

a Copy and complete the following table: VT

b Plot % against /z, and draw a straight line through the points.
T

¢ Hence write y in terms of x.
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8 Consider the points (a, 0) and (0, b).
a Find the equation of the straight line through these points, in general form.

b Let 0 be the angle between the line and the z-axis. Show that the general form of the equation

of the line is (sinf)x + (cosf)y = d where d = % __ i the shortest distance from the

v/ a? + b2

line to the origin.

9 (77 W ABC is a triangle in which M is the midpoint of AB,
ABC = 90°, and C lies on the z-axis.
M(-2,9) a Find the coordinates of:
i B ii C
A(—6, 6)

b Find the area of the triangle.

©

O x
\j

10 The line 4z — 3y =2 intersects the curve 3 1 _1 atA and B. Find the midpoint of AB.
Yy x

11 This table shows experimental values of x and y: az 2 4 6 8
y | 2154 | 464 | 1 |0.21

a By plotting a suitable straight line graph, show that z and y are related by the equation
y = a X b®, where a and b are constants.

b Hence find y when z = 1.
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Opening problem

Consider an equilateral triangle with sides 2 cm long. Altitude AN
bisects side BC and the vertical angle BAC.

Things to think about:
a Can you use this figure to explain why sin30° = %?
b Use your calculator to find the value of:
i sin150° il sin390° i sin(—330°)
¢ Can you explain each result in b, even though the angles are
not between 0° and 90°?

" RADIAN MEASURE

DEGREE MEASUREMENT OF ANGLES

We have seen previously that one full revolution makes an angle of 360°, and the angle on a straight line
is 180°.

One degree, 1°, is ﬁth of one full revolution.

This measure of angle is commonly used by surveyors and architects.

RADIAN MEASUREMENT OF ANGLES

An angle is said to have a measure of one radian, 1, if it is subtended

at the centre of a circle by an arc equal in length to the radius. are

length=1r

The symbol ‘¢’ is used for radian measure but is usually omitted.
By contrast, the degree symbol is always used when the measure radius =r
of an angle is given in degrees.

From the diagram below, it can be seen that 1€ is slightly smaller
than 60°. In fact, 1¢~ 57.3°.

The word ‘radian’ is an abbreviation of ‘radial angle’.
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Historical note

There are several theories for why one complete turn was divided into 360 degrees:

e 360 is approximately the number of days in a year.

e The Babylonians used a counting system in base 60. If they
drew 6 equilateral triangles within a circle as shown, and
divided each angle into 60 subdivisions, then there were
360 subdivisions in one turn. The division of an hour into
60 minutes, and a minute into 60 seconds, is from this
base 60 counting system. _

e 360 has 24 divisors, including every integer from 1 to 10
except 7.

AV

The idea of measuring an angle by the length of an arc dates to around 1400 and the Persian mathematician
Al-Kashi. The concept of a radian is generally credited to Roger Cotes, however, who described it as
we know it today.

DEGREE-RADIAN CONVYERSIONS

If the radius of a circle is r, then an arc of length 7r, or half the
circumference, will subtend an angle of 7 radians. 180° or ¢

Therefore, 7 radians = 180°. /\

So, 1°= (1&)° ~57.3° and 1° = ({&)" =~ 0.0175°.

™ 180
To convert from degrees to radians, we multiply by 155. We indicate degrees with a small °.
To indicate radians we use a small ¢
To convert from radians to degrees, we multiply by %. or else use no symbol at all.
™
X —
/' 180 \
Degrees Radians
1
\ X =0 /
™
Example 1 ) Self Tutor

Convert 45° to radians in terms of .

45° = (45 x 7&5) radians  or 180° = 7 radians
= Z radians (%)O = 7 radians
45° = 1 radians
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Example 2 «) Self Tutor

Convert 126.5° to radians.

126.5°

= (126.5 x &

~ 2.21 radians

) radians

Angles in radians may be
expressed either in terms
of 7 or as decimals.

5**

<=4

EXERCISE 8A
1 Convert to radians, in terms of 7:
a 90° b 60° c 30° d 18° e 9°
f 135° g 225° h 270° i 360° i r20°
k 315° I 540° m 36° n 80° o 230°
2 Convert to radians, correct to 3 significant figures:
a 36.7° b 137.2° ¢ 317.9° d 219.6° e 396.7°
Example 3 ) Self Tutor
Convert the following radian measures to degrees:
a %’r b 0.638
a b 0.638 radians
= (3£ x 180)° = (0.638 x 182)°
= 150° ~ 36.6°
3 Convert the following radian measures to degrees:
a 3 b ¢ F d 5 e 3
T s 3T = s = T
f 5 g 35 h 55 T i g

4 Convert the following radian measures to degrees.

Give your answers correct to 2 decimal places.

a 2 b 153 c 0.867 d 3.179 e 5.267
5 Copy and complete, giving your answers in terms of 7:
a | Degrees | 0 | 45 | 90 | 135|180 | 225 | 270 | 315 | 360
Radians
b | Degrees | 0 | 30 | 60 [ 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 | 360
Radians
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1] /ARC LENGTH AND SECTOR AREA

The diagram alongside illustrates terms relating to the parts ... .
- et arc (part of circle)
of a circle.
+  centre
chord radius
An arc, sector, or segment is described as: segment

~ -

e minor if it involves less than half the circle
e major if it involves more than half the circle.

For example:
. minor arc AB A
minor segment (black)
B major arc AB
. (red)
major segment
ARC LENGTH
A In the diagram, the arc length AB is [. Rt 179 el i
¢ Angle 6 is measured in radians. mathematics because they
lenath ) make formulae simpler.
. . t
B We use a ratio to obtain: —— 1 —
circumference 21
L_9
2mr 2w
l=0r

For 6 in radians, arc length I = Or.

For 0 in degrees, arc length I = % X 27T,

AREA OF SECTOR

In the diagram, the area of minor sector XOY is shaded.

X
0 is measured in radians.
. . area of sector 0
vy  We use a ratio to obtain:. ——— = —
area of circle 27
A 0
w2 2m
A=1ior?

For 0 in radians, area of sector A = %01’2.

For 0 in degrees, area of sector A = % X mr2.
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Example 4 o) Self Tutor
A sector has radius 12 cm and angle 3 radians. Find its:
a arc length b area
a arc length = Or b area = 36r°
fr— 2
_§6><12 =1x3x12
—ovem = 216 cm?

EXERCISE 8B

1 Use radians to find the arc length and area of a sector of a circle of:

a radius 9 cm and angle % b radius 4.93 cm and angle 4.67 radians.

2 A sector has an angle of 107.9° and an arc length of 5.92 m. Find its:

a radius b area.
3 A sector has an angle of 1.19 radians and an area of 20.8 cm?. Find its:
a radius b perimeter.
Example 5 o) Self Tutor

Find the area of a sector with radius 8.2 cm and arc length 13.3 cm.

For 0 in radians, [ = Or

l 13.3

9 = - = —

r 8.2

area = 20r”

13.3
=1 x == x 8.2

8.2

~ 54.5 cm?

4 Find, in radians, the angle of a sector of:

a radius 4.3 m and arc length 2.95 m b radius 10 cm and area 30 cm?.
5 Find @ (in radians) for each of the following, and hence find the area of each figure:

a b ¢ 31.7cm

8cm

8.4cm 9

6 Find the arc length and area of a sector of radius 5 cm and angle 2 radians.

7 1If a sector has radius 2z cm and arc length = cm, show that its area is 2 cm?.
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8 The cone is made from this sector:

v

7 cm
Find, correct to 3 significant figures:
a the slant length s cm b the value of r
¢ the arc length of the sector d the sector angle € in radians.
9 The end wall of a building has the shape illustrated, where
the centre of arc AB is C. Find:

a « to 4 significant figures
b 0 to 4 significant figures
¢ the area of the wall.

10 T [AT] is a tangent to the given circlee. OA = 13 cm and
the circle has radius 5 cm. Find the perimeter of the shaded
region.

A
11 A nautical mile (nmi) is the distance on the Earth’s surface N 1 nautical mile
that subtends an angle of 1 minute (or 6—10 of a degree) of the (nmi)
Great Circle arc measured from the centre of the Earth.
A knot is a speed of 1 nautical mile per hour.
a Given that the radius of the Earth is 6370 km, show that
1 nmi ~ 1.853 km.
b Calculate how long it would take a plane to fly from
London to Moscow (a distance of 2508 km) if the plane
can fly at 480 knots. i
S
12 fence _ A sheep is tethered to a post which is 6 m from
K 3 "~ along fence. The length of rope is 9 m. Find
6m the area which the sheep can feed on.
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AND THE
RATIOS

The unit circle is the circle with
centre (0, 0) and radius 1 unit.

CIRCLES WITH CENTRE (0, 0)

Consider a circle with centre (0, 0) and radius r units.
Suppose P(z, y) is any point on this circle.

Since OP =r,
" V(@ =02+ (y—02=r {distance formula}

[
y

Y
P(z,y)

x? +y? = r? s the equation of a circle with centre (0, 0)
' and radius r.

The equation of the unit circle is z2 + 3% = 1.

ANGLE MEASUREMENT
Suppose P lies anywhere on the unit circle, and A is (1, 0). Ly Positive
Let 6 be the angle measured from [OA] on the positive z-axis. direction
0 is positive for anticlockwise rotations and 0
negative for clockwise rotations. - f \ 1
+10 A T
. P

For example: 6 = 210° = {F Negative

¢ = —150° = —%’T v direction

DEFINITION OF SINE AND COSINE

Consider a point P(a, b) which lies on the unit circle in the first
quadrant. [OP] makes an angle 6 with the z-axis as shown.

Using right angled triangle trigonometry:

ADIJ a
cosl) = — = - =
HYP 1
g O b
HYP 1
OPP b in 0
tanf = — = 2 =2
ADJ a cos 6
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In general, for a point P anywhere on the unit circle: 1y
e cos0 is the z-coordinate of P
e sin@ is the y-coordinate of P ON. /1 T

T » P(cos#, sinf)

We can hence find the coordinates of any point on the unit circle with given angle § measured from the
positive z-axis.

For example: Y Ay
(cosT5°, sin75°) 1

—_

75°
(cos165° sin165°)/ 1650 3272 \

—33°[1 @
(cos327°, sin327°) or
(cos(—33°), sin(—33°))

o
ICA

255°

(cos255°, sin255°)

Y 3
Since the unit circle has equation 22 +y*> =1, (cosf)?+ (sinf)? =1 for all 6.
We commonly write this as cos? 0 + sin? 0 = 1.

For all points on the unit circle, —1<x <1 and —-1<y<1

So, —1<cosf <1 and —1<sinf <1 forallé.
DEFINITION OF TANGENT
Suppose we extend [OP] to meet the tangent from A(1, 0). Ay
We let the intersection between these lines be point Q. 1 Q(1,tan 6)
Note that as P moves, so does Q. P
o . . i tan 6
The position of Q relative to A is defined as the tangent ! sin @ an
function. - () d o x
Notice that As ONP and OAQ are equiangular and therefore -1 o cos A(1,0)
similar.
Consequently AQ _ WP and hence AQ _ Smo.
OA ON 1 cos 6
g -1 tangent
sin 6 v

Under the definition that AQ = tan®, tan @ =
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Discovery 1 The trigonometric ratios

In this Discovery we explore the signs of the trigonometric ratios in each quadrant of the unit circle.

What to do: THE UNIT

CIRCLE

-

1 Click on the icon to run the Unit Circle software.
Drag the point P slowly around the circle. ()
Note the sign of each trigonometric ratio in each quadrant. \&™

Quadrant | cosf | sinf | tan@
1 positive
2
3
4

2 Hence note down the trigonometric ratios which are Yy
positive in each quadrant.
0 s

From the Discovery you should have found that:

e sinf, cosd, and tan 0 are positive in quadrant 1 2nd 3
L 2

Y
e only sinf is positive in quadrant 2 T
A

e only tanf is positive in quadrant 3
e only cosf is positive in quadrant 4. -

X

%"
)
/

We can use a letter to show which trigonometric ratios are T C

positive in each quadrant. The A stands for a// of the ratios. \ pe
‘@ — B?% 4th
; - 1]

You might like to remember them using 3rd

All Silly Turtles Crawl.

Example 6 ») Self Tutor

Use a unit circle diagram to find the values of cos(—270°) and sin(—270°).

0,1}

—2703 °
5 90

cos(—270°) =0  {the z-coordinate}
3 sin(—270°) =1  {the y-coordinate}
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PERIODICITY OF TRIGONOMETRIC RATIOS

Since there are 27 radians in a full revolution, if we add any integer multiple of 27 to 6 (in radians) then
the position of P on the unit circle is unchanged.

For 6 in radians and k € Z,
cos (0 + 2kw) = cosO and sin (0 + 2kw) = sin 6.

We notice that for any point (cos@, sin#) on the unit circle, the y
point directly opposite is (— cos#, —sin0) 1 (a,b)
cos(f 4+ m) = —cosf
(0 - 0+m 100
sin( —i—ﬂ')——s?n - “— 5 T
and tan(f+m) = —sind _ sinf_ong
—cos 6 cos 6
—a,—b
(—a b
A\

For 6 in radians and k € Z, tan(0 4 k) = tan®.
This periodic feature is an important property of the trigonometric functions.

EXERCISE 8C

1 For each unit circle illustrated:

i state the exact coordinates of points A, B, and C in terms of sine and cosine
il use your calculator to give the coordinates of A, B, and C correct to 3 significant figures.

2 With the aid of a unit circle, complete the following table:
0 (degrees) | 0° 90° | 180° | 270° | 360° | 450°
0 (radians)

sine

cosine

tangent
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L i B
V2 2
b Copy and complete the following table. If necessary, use your calculator to evaluate the

trigonometric ratios, then a to write them exactly.

3 a Use your calculator to evaluate: i

0 (degrees) | 30° | 45° | 60° | 135° | 150° | 240° | 315°

0 (radians)

sine

cosine
tangent

Use your calculator to evaluate:
i sin100° il sin80°
v sin150° vi sin30°
Use the results from a to copy and complete:
sin(180° — 0) =

¢ Justify your answer using the diagram alongside:

sin 120°
sin 45°

iv sin60°
sin 135°

vii viii

Find the obtuse angle with the same sine as:

i 45° il 51° i %

iv

ol

Use your calculator to evaluate:
i cosT70° ii cos110°
VvV cos25° vi cos155°
Use the results from a to copy and complete:
cos(180° — 0) =

¢ Justify your answer using the diagram alongside:

cos 60°
cos 80°

iv cos120°
viii cos 100°

iii
vii

d Find the obtuse angle which has the negative cosine of:
- o - e} HH T H 27
i 40 ii 19 iii ¢ iv =
6 Without using your calculator, find:
a sin137° if sin43° ~ 0.6820 b sin59° if sin121° ~ 0.8572
¢ cos143° if cos37° =~ 0.7986 d cos24° if cos1H6° ~ —0.9135
e sinl15° if sin65° ~ 0.9063 f cos132° if cos48° =~ 0.6691

7 a Copy and complete:

Quadrant

Degree measure

Radian measure

cos 0

sin 6

tan 6

1

0° < 0 < 90°

0<0< 3

positive

positive

2
3
4
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b In which quadrants are the following true?

i cosf is positive. ii cos@ is negative.
iii cos@ and sinf are both negative. iv cos@ is negative and sin 6 is positive.
8 a If AOP= B6Q = ¢, whatisthe measure of A6Q? Ay
b Copy and complete: 1
[0Q] is a reflection of [OP] in the ...... QL ) P(cos®, sinf)
and so Q has coor.dlnates ...... B ) 5 A
¢ What trigonometric formulaec can be deduced ) 13) 1

from a and b?

9 a Copy and complete:

0°¢ sinf | sin(—60) | cosd | cos(—6)
0.75
1.772
3.414
6.25
—1.17

-3

What trigonometric formulae can be deduced from your results in a?
The coordinates of P in the figure are (cos6, sin6).

i By finding the coordinates of Q in terms of 6 in two
different ways, prove your formulae in b.
ii Hence explain why cos(2m — ) = cos#.

Y

" 1| /APPLICATIONS OF THE UNIT CIRCLE

The identity cos? 6+ sin?6 =1 is essential for finding trigonometric ratios.

Example 7 ) Self Tutor

Find the possible values of cosf for sinf =

win

[lustrate your answers.

cos? 0 +sin’6 =1
cos® 0 + (%)2 =1
2)_ 5

cos“ 0 = 3

. cosf = :l:@




214 The unit circle and radian measure (Chapter 8)

EXERCISE 8D.1
1 Find the possible values of cos @ for:
a sinf =3 b sinf=—1 ¢ sinf =0 d sinf=-1
2 Find the possible values of sin 8 for:
a cos@z% b 0059:—% c cosf=1 d cosf=0
Example 8 ) Self Tutor
If sinf=-2 and 7 <6 <3, find cos6 and tand. Give exact answers.
Now cos?0 +sin?0 =1
cos® 6 + % =1 by
C0829:1—76 S/\A
. cosf = 47
1 . R .
But 7 <0< 37", so 6 is a quadrant 3 angle. Yo .
cos is negative. T K -3 C
3
— —ﬁ — Sina = _Z — i v
cosf 7 and tan® prvr Ry, BV
I
3 Find the exact value of:
a sin@ifcosﬂ:%and 0<0<3 b cosf ifsinﬂzgand F<O<m
c cosf if sinf = —% and 37” <0 <2 d sinf if cosf = —1% and <0 < 37”
4 Find the exact value of tanf given that:
a sin@:% and Z <0< b cos@:% and 37”<0<27r
c sinﬂz—% and T<0<3 d cosf=-32 and Z<O<m.
Example 9 ) Self Tutor
If tanf = —2 and 37” <0 < 2w, find sinf and cosf. Give exact answers.
tanf = sinf _ -2
cos 6
sinf = —2cosf

Now sin?6 + cos?6 =1
(—2cos0)? 4 cos? 0 =1
4cos? 0+ cos? 0 =1
5cos? 0 =1

.1
cosf = iﬁ

But 37” < 0 < 2m, so 6 is a quadrant 4 angle.

cos @ is positive and sin 6 is negative.

cosf = % and sinf = —\/ig.
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5 Find exact values for sinz and cosx given that:

a tanz =2 and 0<:c<§ b tanz=—%

us
3 and s<z<T

3
c tanmzé and T <z <3 d tanz=—22 and

3

7<$<27T

6 Suppose tanf = k where k is a constant and 7 < 6 < 37” Write expressions for sinf and
cosf in terms of k.

FINDING ANGLES WITH PARTICULAR TRIGONOMETRIC RATIOS

From Exercise 8C you should have discovered that:

For 0 in radians:

e sin(w — 6) = sinf e cos(m —60) = —cos@ e cos(2m — 6) = cos O

We need results such as these, and also the periodicity of the trigonometric ratios, to find angles which have
a particular sine, cosine, or tangent.

Example 10 ») Self Tutor

Find the two angles 6 on the unit circle, with 0 < 6 < 27, such that:

b sing=3 ¢ tanf =2
b sin~'(2) ~ 0.848 ¢ tan"'(2) =~ 1.11
1 Yy
e i} 0 1z
-1 -1
0~1.23 or 27 —1.23 s, 0 ~0.848 or w—0.848 s, 0~1.11 or m+1.11
0 ~1.23 or 5.05 s 0=0.848 or 2.29 s, 0~ 1.11 or 4.25
If cos 0, sin 0, or tan 6 is positive,
your calculator will give 6
in the domain 0 < 0 < Z.
EXERCISE 8D.2
1 Find two angles 6 on the unit circle, with 0 < 6 < 27, such that:
a tanf =4 b cosf =0.83 c Siﬂ@z%
d cosf0=0 e tanf=1.2 f cosd =0.7816

g sinf = h tan6 = 20.2 i sing =33
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Example 11 ) Self Tutor
Find two angles 6 on the unit circle, with 0 < 0 < 27, such that:

a sinf =-0.4 b cos9:—§ c tan@——%

a sin !(—0.4) ~ —0.412 b

But 0 <0< 2n But 0 <60 <2r But 0 <0< 2rn
0 ~m+0.412 or s 0230 or S 0~71—0.322 or
2w —0.412 2w —2.30 21 — 0.322
0 ~ 3.55 or 5.87 o 0=~2.30 or 3.98 o 0~2.82 or 5.96

The green arrow
shows the angle that

If sin 6 or tan 6 is negative,
your calculator will give 0
in the domain —% < 6 < 0. your calculator gives.

2 Find two angles 6 on the unit circle, with 0 < 6 < 27, such that:

a cosf=-1 b sind=0 ¢ tanf = —

3.1

d sinf = —-0.421 e tanf = —6.67 f cosf = —%
_ _ 1 oo A2

g tan® = —/b h COSQ——% i smﬁf—ﬁ

Discovery 2 Parametric equations

Usually we write functions in the form y = f(x). The use of parametric

For example: y=3z+7, y=2>—6x+8, y=sinz SUEHIOTE 19 mot wBaumiE]

for the syllabus.
However, sometimes it is useful to express both = and y in terms

of another variable ¢, called the parameter. In this case we say \
we have parametric equations.
What to do: ity

1 a Use the graphing package to plot ~

(o)
{(z, y) : x = cost, y=sint, 0° <t <360°}. F‘"K
Use the same scale on both axes.
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b Describe the resulting graph. Is it the graph of a function?
¢ Evaluate 22 + 92,

2 Use the graphing package to plot:

a {(z, y):x=2cost, y=sin(2t), 0°<t<360°}

b {(z,y):x=2cost, y=2sin(3t), 0°<t<360°}

¢ {(z,y):z=2cost, y=cost—sint, 0°<t<360°}
d {(z,y):xz=cos?t+sin2t, y=cost, 0°<t<360°}
e {(z,y):xz=cos®t, y=sint, 0°<t<360°}

I3 IF ; Ano

s

Angles which are multiples of %

ratios exactly.

MULTIPLES OF 7. OR 45°

Hence determine the equation of this graph in terms of = and y only.

and 7 occur frequently, so it is important for us to write their trigonometric

.P(a, a)

450

Triangle OBP is isosceles as angle OPB Ay
also measures 45°. ]
Letting OB = BP =aq,
a®*+a?=1? {Pythagoras}
2a° =1
o’ =3 1
a= % {as a >0}
So, Pis (5, %) where  —= & 0.707. N
(0] a
cos%:% and sin%:% Y

You should remember these values. If you forget, draw a right angled
isosceles triangle with equal sides of length 1.

For multiples of 7, we have:
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MULTIPLES OF 7 OR 30°

Since OA = OP, triangle OAP is isosceles. by

The remaining angles are therefore also 60°, and so P(1,k)
triangle AOP is equilateral.

The altitude [PN] bisects base [OA], so ON = %

i/
IfPis (1, k), then (3)>+k*=1  {Pythagoras} ik
=3
4 ;
_ B :
k=% {as k>0} oo e R
S 1 N Ao T
So, Pis (%, ¥X2) where 2~ 0.866 ¥ 2 ( )’
V3 1
T L
cosy =35 and sing =%
Now NPO = I = 30°. L7307 3
Hence cosg = ‘/Tg and sing = % 0 60% N
You should remember these values. If you forget, divide in two an
equilateral triangle with side length 2.
2 300 ‘\““2
3"
60° o
- ! 2 >

For multiples of %, we have:

Summary
e For multiples of 7, the coordinates of the points on the unit circle involve 0 and £1.
e For other multiples of 7, the coordinates involve :i:%.

e For other multiples of %, the coordinates involve j:% and j:\/Tg.

e The signs of the coordinates are determined by which quadrant the angle is in.

You should be able to use this summary to find the trigonometric ratios for angles which are multiples of
Zand Z.
6 4
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Example 12 ) Self Tutor
Find the exact values of sinca, cosa, and tanca for:
a a=72 b a=4

b 4?” is a multiple of F.

The angle lies in quadrant 3, so only
tan %’T is positive.

a ?jT“ is a multiple of 7.

The angle lies in quadrant 2, so only

. 37\' . o,
sin <~ 1S positive.

()

M)
N

sin(32) = %
cos(3L) = —%
tan(2F) = —1
EXERCISE 8E
1 Use a unit circle diagram to find exact values for sinf, cosf, and tanf, for 6 equal to:
T s T —3m
a x b b} C vy d ™ e 7
2 Use a unit circle diagram to find exact values for sin(3, cos(, and tang, for 3 equal to:
i 27 Ve 5 117
a 3 b c % d 5 e 5§

3 Find the exact values of:

a cos120°, sin120°, and tan120° b cos(—45°), sin(—45°), and tan(—45°)
4 a Find the exact values of cos270° and sin 270°.

b What can you say about tan 270°?

Example 13 ) Self Tutor

Without using a calculator, show that 8sin(%) cos(3Z) = —6.

ot

sin(%)z@ and cos(F) = @

8sin(§) cos(%F) = 8(F)(— %)
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5 Without using a calculator, evaluate:

a sin?60° b sin30° cos 60° ¢ 4sin60° cos 30°
d 1—cos’(%) e sin*(F) -1 f cos?(Z) —sin(LF)
g sin(2F) — cos(2F) h 1-2sin*(ZF) i cos?(3F) —sin®(2X)
- 2T 207 57 . /371 2 tan 150°
j tan®*(%) —2sin”(%) k 2tan(—<f) —sin(5F) T
Check your answers using your calculator.
Example 14 %) Self Tutor

Find all angles 0 < 0 < 27 with a cosine of %

Since the cosine is %, we draw the

vertical line =z = %

Because % is involved, we know the

required angles are multiples of .

They are % and 3T
6 Find all angles between 0° and 360° with:
a asine of § b a sine of @ ¢ a cosine of %
d a cosine of —% e a cosine of —% f asine of — \/_

7 Find all angles between 0 and 27 (inclusive) which have:

a atangent of 1 b a tangent of —1 ¢ atangent of /3
d a tangent of 0 e a tangent of % f atangent of —/3

8 Find all angles between 0 and 47 with:

a a cosine of @ b a sine of f% ¢ asine of —1

9 Findfif 0<6<2r and:
1
2

a cosf = b sin9:§ c cosh=-—1 d sinf=1
e 0050:—% f sin20=1 g cos’f=1 h cos20:%
i tan@z—% j tan?0=3

10 Find all values of 6 for which tan @ is: a zero b undefined.
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'RECIPROCAL TRIGONOMETRIC RATIOS

We define the reciprocal trigonometric functions cosec #, secant #, and cotangent 6 as:

1 1 cos 6@
cosec = ——, sec = , and cot @ = = —
sin 6 cos 60 tan @ sin @

Using these definitions we can derive the identities:

tan®0 + 1 = sec? 0 and 1 + cot? 0 = cosec? 0

Proof: Using  sin® 6 + cos® 0 = 1,
sin? 6 cos? 6 1
cos2 0 cos260  cos20

tan?0 + 1 = sec? 6

{dividing each term by cos” 8}

Also using  sin% 6 + cos? 0 = 1,
sinZ 6 cos? 6 1
sinZ 6 sin? 6 sin2 0

1+ cot? 0 = cosec? 0

{dividing each term by sin? 6}

EXERCISE 8F
1 Without using a calculator, find:
a cosec (%) b cot (%) ¢ sec(3) d cot ()
e cosec (4?”) f sec (%r)

2 Without using a calculator, find cosecx, secx, and cotx for:

a sinz=2, 0<z<

T -2 3z
s 5 b cosr=35, T <z<2m

3 Find the other five trigonometric ratios if:

a cosH:% and 37”<9<27r b sinx:f% and 71'<sc<377r

c seca::2% and 0<z<3 d cosecf =2 and F<O<m

e tanf=1 and T<pB< L f cotf=3 and m<6<3L
4 Find all values of 6 for which:

a cosecf is undefined b sec6 is undefined

c cotf is zero d cot@ is undefined.

Review set 8A

1 Convert these to radians in terms of 7:
a 120° b 225° ¢ 150° d 540°
2 Find the acute angles that would have the same:

a sine as %” b sine as 165° ¢ cosine as 276°.
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3 Find:
a sinl159° if sin21° =~ 0.358 b cos92° if cos88° = 0.035
¢ cos75° if cos105° ~ —0.259 d sin(—133°) if sin47° ~0.731

4 Determine the area of a sector of angle ?—g and radius 13 cm.
5 Use the unit circle to find € such that cosf = —sinf, 0 <6 < 27.

6 Find exact values for sinf, cosf, and tan6 for 6 equal to:

o 2 8m
a 360 b 3 Cc —7 d 3
7 If cosf= % find the possible values of sin 6.
8 Evaluate:
a 2sin(%)cos(%) b tan?(%) -1 ¢ cos?(§) —sin®*(%)
9 Given tanz=-3 and 2T <z <2r, find: a cosx b sinz.

10

Find the perimeter and area of the sector.

11 Suppose cosf = \/L}—; and 6 is acute. Find the exact value of tan .

12 Find all angles between 0° and 360° which have:

1

a a cosine of —@ b a secant of /2 ¢ a cotangent of — e

13 Find 6 for 0<60 <2 if:

a cosf=-1 b sin20:%

14 If sinz=-7 and m7<z<3L

5, find the other five trigonometric ratios exactly.

Review set 8B

1 Convert these radian measurements to degrees:

2 5w T
a? bT cT d

|._.
o~
3

2 [Illustrate the regions where sinf and cosf have the same sign.

3 Use a unit circle diagram to find:

a cos(3r) and sin(3) b cos(—%) and sin(—%)

4 Suppose m =sinp, where p is acute. Write an expression in terms of m for:

a sin(rm —p) b sin(p+ 27) c cosp d tanp
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10
11
12

13
14

P a State the value of 6 in:

i degrees il radians.
b State the arc length AP.
¢ State the area of the minor secfor OAP.

Show that cos(2%) —sin(2F) = —v/2.
If cosf = —%, 5 <0 <7 find the other five trigonometric ratios exactly.
Without using a calculator, evaluate:
a tan?60° — sin?45° b cos?(%) +sin(%) ¢ cos(3) — tan(2F)
Find two angles on the unit circle with 0 < 6 < 27, such that:
a cos@z% b sin9——% c tanf =3

Find the perimeter and area of a sector of radius 11 cm and angle 63°.

Find the radius and area of a sector of perimeter 36 cm with an angle of %’T
Simplify:

a sin(m —60) —sind b cosftand
If seca= —3% and 0 < a <, find the other five trigonometric ratios exactly.

Three circles with radius r are drawn as shown,
each with its centre on the circumference of the
other two circles. A, B, and C are the centres of
the three circles.
Prove that an expression for the area of the shaded
2
region is A = 5 — (7 —+/3). v
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Opening problem

A Ferris wheel rotates at a constant speed. The wheel’s
radius is 10 m and the bottom of the wheel is 2 m above
ground level. From a point in front of the wheel, Andrew
is watching a green light on the perimeter of the wheel.
Andrew notices that the green light moves in a circle.
He estimates how high the light is above ground level at
two second intervals, and draws a scatter diagram of his
results.

Things to think about:
a What will Andrew’s scatter diagram look like?
b What function can be used to model the data?
¢ How could this function be used to find:

i the light’s position at any point in time
ii the times when the light is at its maximum and
minimum heights?

d What part of the function indicates the time for one full revolution of the wheel?

Click on the icon to visit a simulation of the Ferris wheel. You will be able to view the k)
light from: = A
e in front of the wheel e a side-on position e above the wheel. L K

You can then observe the graph of the green light’s position as the wheel rotates at a constant rate.

PERIODIC BEHAVIOUR

Periodic phenomena occur all the time in the physical world. Their behaviour repeats again and again over
time.
We see periodic behaviour in:

e scasonal variations in our climate

e variations in average maximum and minimum monthly temperatures

e the number of daylight hours at a particular location

e tidal variations in the depth of water in a harbour

e the phases of the moon

e animal populations.

In this chapter we will see how trigonometric functions can be used to model periodic phenomena.

OBSERVING PERIODIC BEHAVIOUR

The table below shows the mean monthly maximum temperature for Cape Town, South Africa.

Month Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep

Temperature T' (°C) 21% 24 26 | 28 | 27 25% 22 18% 16 | 15 | 16 18
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On the scatter diagram alongside we plot the b7 (°C)
temperature 7' on the vertical axis. We assign 30 . o
[
October as ¢ = 1 month, November as ¢t = 2 50 .\' o
months, and so on for the rest of the year. (1,213 ° . o
o
10
t (months)
- 0 T T T T T T L
8 3 6 9 12 5
vy © @)

The cycle will approximately repeat itself for each subsequent 12 month period. By the end of the chapter

we will be able to establish a periodic function which approximately fits this set of points.

}7(°C)
30
.0..0 ....o
o o
20f ° . Fa— ° .
© o © o o o
10
t (months)
Oy 3 6 9 12& 15 18 21 245
vy O o o

Graphs with this basic shape, where the cycle is repeated over and over, are called sine waves.

Historical note

lines of
magnetic
force

direction fD
of rotation

90° 180° 270°

In 1831 Michael Faraday discovered that an electric current was generated by rotating a coil of wire
in a magnetic field. The electric current produced showed a voltage which varied between positive and

negative values as the coil rotated through 360°.

GATHERING PERIODIC DATA

Data on a number of periodic phenomena can be found online or in other publications. For example:

e Maximum and minimum monthly temperatures can be found at www.weatherbase.com

e Tidal details can be obtained from daily newspapers or internet sites such as
http://tidesandcurrents.noaa.gov or http://www.bom.gov.au/oceanography
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TERMINOLOGY USED TO DESCRIBE PERIODICITY

A periodic function is one which repeats itself over and over in
a horizontal direction, in intervals of the same length.

The period of a periodic function is the length of one repetition
or cycle.

f(z) is a periodic function with period p < f(x + p) = f(x)
for all z, and p is the smallest positive value for this to be true.

A cycloid is an example of a periodic function. It is the curve traced out by a point on a circle as the circle

rolls across a flat surface in a straight line. DEMO

e

~ .’
. Pis
~ .
. .
. .

horizontal flat surface

Use a graphing package to examine the function f(z) =z — [7] Gpi‘zwgf

where [z] is “the largest integer less than or equal to x”.

Is f(x) periodic? What is its period? o -
R

WAVES

In this course we are mainly concerned with periodic phenomena which show a wave pattern.

The wave oscillates about a horizontal line called the principal axis or mean line which has
max + min

2

A maximum point occurs at the top of a crest, and a minimum point at the bottom of a trough.

equation y =

The amplitude is the distance between a maximum (or minimum) point and the principal axis.

max — min

amplitude = B

maximum point

................................................. e G ST T TP e PR ER R SRR e e S

l amplitude . .
principal axis

. . period
minimum point
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EXERCISE 9A
1 Which of these graphs show periodic behaviour?
a y b
‘ol RNV g 56 9 12 15 18 ¥
c d
—
—-o0

H'
— 2
DO
C
<ih.
<Y

o
.

2 The table below shows the height above the ground of a point on a bicycle wheel as it is rolled along
a flat surface.

Distance travelled (cm) 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200
Height above ground (cm) | 0 6 | 23 | 42 | 57 [ 64 | 59 | 43 | 23 | 7 1

Distance travelled (cm) | 220 | 240 | 260 | 280 | 300 | 320 | 340 | 360 | 380 | 400
Height above ground (cm) | 5 | 27 | 40 | 55 [ 63 | 60 | 44 | 24 | 9 3

a Plot the graph of height against distance.
b Is it reasonable to fit a curve to this data, or should we leave it as discrete points?
¢ Is the data periodic? If so, estimate:
i the equation of the principal axis il the maximum value
ifi the period iv the amplitude.

3 Draw a scatter diagram for each set of data below. Is there evidence to suggest the data is periodic?

a |z 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12
Y 0 1 1.4 1 0 -1 | —-14 | -1 0 1 1.4 1 0

b |z 0 2 3 4 ) 6 7 8 9 10 12
Y 0 | 47|34 | 1721|5289 (109 | 10.2 | 84 | 104
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| [THE SINE FUNCTION

In previous studies of trigonometry we have only considered static situations where an angle is fixed.
However, when an object moves around a circle, the situation is dynamic. The angle 6 between the radius
[OP] and the positive z-axis continually changes with time.

by
Consider again the Opening Problem in which a Ferris wheel of radius P
10 m revolves at constant speed. We let P represent the green light on 10
the wheel. in
The height of P relative to the x-axis can be determined using right angled = = 5 (A¥n T

triangle trigonometry:

sin@zi, so h=10sin6.
10

As time goes by, 6 changes and so does h. Y

So, we can write h as a function of 6, or alternatively we can write h as a function of time .

For example, suppose the Ferris wheel observed by Andrew takes 100 seconds for a full revolution. The
graph below shows the height of the light above or below the principal axis against the time in seconds.

4 height (metres
L0 e OS ) eeeeeeeeeeeee e

> o)
o 100 time (seconds) | =

O A T T
\j

We observe that the amplitude is 10 metres and the period is 100 seconds.

THE BASIC SINE CURVE y =sinx

Suppose point P moves around the unit circle so the angle [OP] makes b
with the positive horizontal axis is z. In this case P has coordinates
(cosz, sinzx).

P (cos z,sin z)

\J

If we project the values of sinz from the unit circle to a set of axes -
alongside, we can obtain the graph of y = sinz.

Note carefully that = on the unit circle diagram is an angle, and becomes
the horizontal coordinate of the sine function. v

Unless indicated otherwise, you should assume that x is measured in radians. Degrees are only included on
this graph for the sake of completeness.
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Click on the icon to generate the sine function for yourself. SINE FUNCTION
You should observe that the sine function can be continued beyond 0 < z < 27 Sy
in either direction. &,
Ay
........................................ 1..
\
—180° —90° 90° 180° 270° 360° 450° 540°
% —Z 0 z & 2m S 3T, T
i y=sinx
............................... 71..
A\

The unit circle repeats itself after one full revolution, so the period of y =sinx is 2.
The maximum value is 1 and the minimum is —1, as —1 <y < 1 on the unit circle.

The amplitude of y =sinx is 1.

TRANSFORMATIONS OF THE SINE CURVE

In the Discoveries that follow, we will consider different transformations of the sine curve y = sinz. We
will hence be able to generate the curve for the general sine function y = asinbz +c¢, a >0, b > 0.

Discovery 1 The family y = asinx, a > 0
DYNAMIC
Click on the icon to explore the family y = asinz, a > 0. SINE FUNCTION
What to do: &S
1 Use the slider to vary the value of a. Observe the changes to L&)

the graph of the function.
2 Use the software to help complete the table:

Cm is measured in radians.)

a Function | Maximum | Minimum | Period | Amplitude
1 y =sinzx 1 —1 27 1

2 | y=2sinx

3 | y=3sinzx

0.5y =0.5sinx
a | y=asinz

3 How does a affect the function y = asinx?

Discovery 2 The family y = sinbx, b > 0
_ _ . ) DYNAMIC
Click on the icon to explore the family y =sinbx, b > 0. SINE FUNCTION
What to do: &~

1 Use the slider to vary the value of b. Observe the changes to the graph of \¢ )

the function.
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2 Use the software to help complete the table:

b Function Maximum | Minimum | Period | Amplitude
1 y =sinz 1 —1 2w 1

2 | y=sin2x

3| y=sin3dx

2 | y=sin(3z)

b | y=-sinbx

3 How does b affect the function y = sin bx?

Discovery 3

The family y = sinx + ¢

Click on the icon to explore the family y = sinz + c.

What to do:

1 Use the slider to vary the value of c. Observe the changes to the graph of

the function.

2 Use the software to help complete the table:

d Function Maximum | Minimum | Period | Amplitude
0 y =sinz 1 =1 27 1

3 | y=sinz+3

—2 | y=sinz—2

d | y=sinz+c

3 How does c affect the function y = sinx + ¢?

THE GENERAL SINE FUNCTION

The general sine function is

amplitude

y = asinbx + ¢ where a >0, b>0.

affects

affects
period

affects

vertical translation

The principal axis of the general sine function is y = c.

27

The period of the general sine function is 5

The amplitude of the general sine function is a.

(Chapter 9)

SINE FUNCTION
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Example 1 ) Self Tutor

Without using technology, sketch the following graphs for 0 < z < 47
a y=2sinx b y=sin2zx ¢ y=sinx—1

a The amplitude is 2 and the period is 27.

b The period is 27” =.

the maximum values are 7 units apart.

Since sin 2z has half the
period of sin z, the first

. . . . . maximum is at T not 5.
¢ This is a vertical translation of y = sinxz downwards by 1 unit. 4 2

The principal axis is now y = —1. \

EXERCISE 9B
) . . ) GRAPHING
1 Without using technology, sketch the following graphs for 0 < x < 47 PACKAGE
a y=3sinz b y=4sinz ¢ y=sin3dz 1
d y=sin4dx e y=sinx+2 f y=sinz—3 :“i
Check your answers using technology. {"

2 Find the value of a given that the function y = asinz, a > 0, has amplitude:
a 2 b 5 c 11
3 Find the value of b given that the function y =sinbx, b > 0, has period:

2m 27
a 3 b5 c

Y
wol

us
3
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4 Find the value of ¢ given that the function y = sinz 4 ¢ has principal axis:

a y=3 b y=-1 c y=>

Example 2 ) Self Tutor

Without using technology, sketch y = 2sin3z +1 for 0 < z < 27.

We start with y = sinx. We then:
e double the amplitude to produce y = 2sinz, then

e divide the period by 3 to produce y = 2sin3x, then

e translate the graph 1 unit upwards to produce y = 2sin3xz + 1, so the principal axis is
now y = 1.

y=2sin3z+1

5 Without using technology, sketch the following graphs for 0 < x < 27
a y=3sinz—1 b y=2sin3z ¢ y=sin2x+3
d y=3sin2zx—1 e y=>5sin2zx+3 f y=4sin3z -2
Check your answers using technology.
6 Find a, b, and ¢ given that the function y = asinbz +¢, a >0, b> 0, has:
a amplitude 3, period 27, and principal axis y =0
b amplitude 2, period %’T, and principal axis y =6

¢ amplitude 5, period 2%, and principal axis y = —2.

7 Find m and n given the following graph of the function y = msinx + n.

Ay

o

Wl
5
¥
N
3

8

\j

8 On the same set of axes, sketch for 0 < z < 27

a y=sinz and y = |sinz] b y=3sin2z and y = |3sin 2|



Trigonometric functions (Chapter 9)

235

Discovery 4

Modelling using sine functions

When patterns of variation can be identified and quantified using a formula or equation, predictions may
be made about behaviour in the future. Examples of this include tidal movement which can be predicted
many months ahead, and the date of a future full moon.

What to do:

1 Consider again the mean monthly maximum temperature for Cape Town:

Month Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep
Temperature T (°C) 21% 24 | 26 | 28 | 27 25% 22 18% 16 | 15| 16 | 18
The graph over a two year period is shown below:
3O‘T(°C) | 1
o * * [ * *
20 ° T —* r |
o ° ] o ° ]
10
0 ¢ (months)
B 2 S O =5 =B > g = o 9 B > 9 c 0O =5 = > o2 = 6 oo
SEZASEZSEZRZIASE2R=2E22 252" 23

We attempt to model this data using the general sine function y = asinbzx + ¢,

e 060 T 9

or in this case 7T = asinbt + c.

State the period of the function. Hence show that b = %.
Use the amplitude to show that a ~ 6.5.
Use the principal axis to show that ¢~ 21.5.

Superimpose the model T' = 6.5sin(%t) +21.5 on the original data to confirm its accuracy.

2 Some of the largest tides in the world are observed in Canada’s Bay of Fundy. The difference
between high and low tides is 14 metres, and the average time difference between high tides is

about 12.4 hours.

Suppose the mean tide occurs at midnight.

a Find a sine model for the height of the tide H in terms of the time ¢.

b Sketch the graph of the model over one period.

3 Revisit the Opening Problem on page 226.
The wheel takes 100 seconds to complete one revolution.
Find the sine model which gives the height of the light
above the ground at any point in time. Assume that at
time ¢ =0, the light is at its mean position.

10m

LN

S

| 2hn
v

green light
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'THE COSINE FUNCTION

We return to the Ferris wheel and now view the movement of the green light from above.

Now 0080:1% so d=10cos0.

The graph being generated over time is therefore a cosine function.

by ]
b horizontal displacement (m) IS W

'
: 10 - >/
10/ \ m—IOCOSH & "i
- 4 F| P - -
: T 0 W 100 time (s)
~10/ :
GRAPHING

Use the graphing package to graph y = cosz and y = sinx on the same set of axes. PACKAGE
I

Like the sine curve y = sinx, the cosine curve y = cosz has a period of 27, an amplitude h(;‘

of 1, and its range is —1 <y < 1. ;

- d

A\

You should observe that y = cosz and y =sinz
are identical in shape, but the cosine function is

5 units left of the sine function.

Use the graphing package to graph y = cosx and

y = sin (x + %) on the same set of axes.

You should observe that cosx = sin (m +

ME!

)

THE GENERAL COSINE FUNCTION

The general cosine function is y = acosbxr +c¢ where a >0, b> 0.

Since the cosine function is a horizontal translation of the sine function, the constants a, b, =~ DYNAMIC
and ¢ have the same effects as for the general sine function. Click on the icon to check this. FSSgITTgN

I

The principal axis of the general cosine function is y = c. I

y=acosbzx + c
has a maximum
when x = 0.

2
The period of the general cosine function is T

The amplitude of the general cosine function is a.
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Example 3 ) Self Tutor

Without using technology, sketch the graph of y = 3cos2z for 0 < z < 27.

a =3, so the amplitude is 3. ]

vy
or o 3 y=3cos2z
b =2, so the period is 5 =5 =™
° W ﬂ \?)2_#/ o
-3

EXERCISE 9C
1 Without using technology, sketch the following graphs for 0 < z < 27
a y=3cosz b y=>5cosz ¢ y=cos2r
d y=cosdzx e y=cosz+2 f y=cosz—1
g y=2cos2x h y=cos3z+1 i y=4cosxz+10
J y=2cos3zr+4 k y=4cos2z—2 I y=3cos2z+5

2 Find a, b, and c given that the function y = acosbr +c¢, a >0, b> 0, has:
a amplitude 4, period %’T, and principal axis y = —1

b amplitude 3, period %", and principal axis y = 3.

3 Find the cosine function shown in the graph:
a y b

ERVARVA .

4 The function y =acosbx +c¢, a >0, b> 0, has amplitude 5, period 27, and principal axis y = 1.

8

o
[\V]
3
S
3
<Y

a Find the values of a, b, and c. b Sketch the function for 0 < x < 27.
5 The graph shown has the form y = acosbx + ¢ by x x x o
where a >0, b> 0. 9 ¢ 3 2 3

[\ )

a Find the values of a, b, and c.

b Sketch the reflection of the function in the
T-axis.

¢ Write down the equation of the reflection in b.
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1| [THE TANGENT FUNCTION

We have seen that if P(cos#f, sinf) is a point which is free Ay
to move around the unit circle, and if [OP] is extended to meet 1 Q(1, tan 6)
the tangent at A(1, 0), the intersection between these lines P
occurs at Q(1, tan@). ) tan 6
) sin @
This enables us to define the tangent function 9 o z
. -1 o cos @ N |A(L,0)
sin 0
tanf = .
cos 0
-1 tangent
\

/ P
v Q(1, tan®)
/ 2\t Q(1,tan6)
- A(1,0) T
A(1,0)
- %
Q(1, tan6)

Discussion

For 6 in quadrant 2, sin@ is positive and cosf is negative
sin 0

COos

and so tanf = is negative.
As before, [OP] is extended to meet the tangent at A at
Q(1, tanf). We see that Q is below the z-axis.

For 0 in quadrant 3, sinf and cosf are both negative and
so tané is positive. This is clearly demonstrated as Q is back
above the z-axis.

For 0 in quadrant 4, sinf is negative and cos6 is positive.
tan @ is again negative. We see that Q is below the z-axis.

What happens to tan 6 when P is at (0, 1) and (0, —1)?
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THE GRAPH OF y = tanx
Since tanz = Siﬂ, tan x will be undefined whenever cosx = 0.
COos T

The zeros of the function y = cosx correspond to vertical asymptotes of the function y = tanz.

Y i ; DEMO
: iy=tanz \
; -
© Or _dn Ip O =z T 3 On bx g
/ 2 2 2 2
-3
: v
We observe that y = tanz has:

e period 7 TANGENT
FUNCTION

e range ycR |
o vertical asymptotes © = 3 + kn forall k€ Z. :«Né
Click on the icon to explore how the tangent function is produced from the unit circle. \ K

THE GENERAL TANGENT FUNCTION

The general tangent function is y = atanbz +c¢, a >0, b> 0.

e The principal axis is y = c. DYNAMIC
: .. TANGENT
e The period of this function is 7 FUNCTION
e The amplitude of this function is undefined. e
".:;/K
Click on the icon to explore the properties of this function. .
Example 4 «) Self Tutor

Without using technology, sketch the graph of y = tan2z for —7w < x < 7.

by

s

Since b =2, the period is

N

The vertical asymptotes are

Y _ .37
ZC—:Izz, .’E—:tT,

and the z-axis intercepts are at
0, £3, £m.
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Discussion

e Discuss how to find the z-intercepts of y = tanz.
e How can we simplify tan(xz — 7)?

e How many solutions does the equation tanz = 2 have?

EXERCISE 9D
1 Sketch the following functions for —7m < & < 7 GRAPHING
PACKAGE
a y=2tancx b y=tan3x c y=tanx+ 2 I
d y=3tan2z e y=2tanx —1 f y=2tan3z+2 a.’m‘
Use technology to check your answers. !, K
2 Find b and ¢ given that the function y = tanbx + ¢, b > 0, has:
a period %’r and principal axis y = 2 b period 5 and principal axis y = —3.
3 Find p and ¢ given the following graph of the function y = tanpt + q.
P : 1 .
v
Activity
CARD GAME

Click on the icon to run a card game for trigonometric functions.

I

:Ti
13 hiGoNOMETaIC EQuATIONS

Linear equations such as 2x + 3 = 11 have exactly one solution. Quadratic equations of the form
ar? +br+c=0, a#0 have at most two real solutions.

Trigonometric equations generally have infinitely many solutions unless a restricted domain such as
0 <z <3 is given.

For example, suppose that Andrew in the Opening Problem wants to know when the green light will be
16 metres above the ground. To find out, he will need to solve a trigonometric equation. If the wheel
keeps rotating, the equation would have infinitely many solutions. Andrew may therefore specify that he is
interested in the first time the green light is 16 metres above the ground.
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If a periodic function f(z) has period p then the domain 0 < < p is called the principal domain.
By solving an equation on the principal domain, all the other solutions can be found using the periodic
behaviour.

If z =a is a solution, then =z =a + kp will also be a solution for all £ € Z.

For example, sinxz has period 27, so it is normal to consider the domain 0 < = < 2.

Discussion

What would you choose as the principal domain for:

e y=cosx e y =sin(2x) e y=tana?

GRAPHICAL SOLUTION OF TRIGONOMETRIC EQUATIONS

Sometimes simple trigonometric graphs are available on grid paper. In such cases we can estimate solutions
straight from the graph.

Example 5 %) Self Tutor

Solve cosz =0.4 for 0 <z < 10 radians using the graph of y = cosz.

Ay
1\ /\
BiEEREETS 1 2 3 4 5 6 7 8 9 10 x
Hy \\/ Yy=cosw
A
- =l'
Y=CoST
A
y=0.4 meets y=cosz atA,B,and C. Hence = ~1.2,5.1, or 7.4.
The solutions of cosx = 0.4 for 0 < x < 10 radians are 1.2, 5.1, and 7.4.
1 1 1 i 1 GRAPHING
Trigonometric equations may also be solved using the graphing package. DA CKAGE
W

i
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EXERCISE 9E.1
1
55031i
O 2 ; N0 g a3 A b
=

Use the graph of y =sinz to find, correct to 1 decimal place, the solutions of:
a sinz=0.3 for 0<z<15 b sinz =-0.4 for 5 <z <15.

Use the graph of y = cosz to find, correct to 1 decimal place, the solutions of:

a cosx=06 for 0<x<10 b cosz=-0.3 for 4 <z <12.
3 ;
05
D $ 6 9/ EH R R Yes) aaal] mum) 944

Use the graph of y = sin2x to find, correct to 1 decimal place, the solutions of:
a sin2x=0.7 for 0 <2z <16 b sin2x = —0.3 for 0 <z < 16.
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4 ]

by :
y=tanzx
3 |
i Ol S SR
Hi. :
=2
=3
Y
The graph of y = tanx is illustrated. GRAPHING
PACKAGE
a Use the graph to estimate: i tanl ii tan2.3
Check your answers using a calculator. ;: :A
b Find, correct to 1 decimal place, the solutions of: E
i tanex =2 for 0 <z <8 il tanx=-14 for 2< 2 <7.
5 Use the graphing package to solve for x on the domain 0 < z < 47
a sinz = 0431 b cosz=—0.814 ¢ 3tang—2=0 | Makesureyoufind
all the solutions on
6 Use the graphing package to solve for x on the domain —5 < x < 5: the given domain.

a bScoszr—4=0 b 2tanz+13=0 ¢ 8sinx+3=0

7 a Use the graphing package to solve sin?z +sinz —2 =0
for 0 <z < 27.

Solve for m: m?2+m—2=0.

(-

Hence explain your answer in a.

SOLVING TRIGONOMETRIC EQUATIONS USING ALGEBRA

Using a graph we get approximate decimal or numerical solutions to trigonometric equations.

Sometimes exact solutions are needed in terms of 7, and these arise when the solutions are multiples of

s

& or 7. Exact solutions obtained using algebra are called analytical solutions.

We use the periodicity of the trigonometric functions to give us all solutions in the required domain.

For example, consider sinxz = 1. We know from the unit circle that a
solution is x = 5. However, since the period of sinz is 2w, there
are infinitely many solutions spaced 27 apart.

(B

Hence x = 5 + k27 is a solution for any k € Z.

In this course we will be solving equations on a fixed domain. This means
there will be a finite number of solutions.
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Reminder: \
(0,1)
11 (L L)
(7573l L vV (
1,0) 0 oy 1,0)
_____________________________ . 2
1 1 1 1
(%) (72 —%)
(0,-1)
Y
Example 6
Solve for z: 2sinz —1=0, 0<z <7
2sinx —1=0
sine =1

2

1

There are two points on the unit circle with sine 5.

s 5m
They correspond to angles % and <.

These are the only solutions on the domain 0 <z < 7, so

—_x ki
r=7F or <.

Since the tangent function is periodic with period m we see that tan(z 4+ 7) = tanz for all values of x.

This means that equal tan values are 7 units apart.

Example 7

W) Self Tutor

Solve tanz++/3=0 for 0<z < 4r.

tanz +v3 =0

tanz = —V/3
There are two points on the unit
circle with tangent —\/g.

2 %
They correspond to angles = and =F.

For the domain 0 < x < 47 we have

s . _ 2w bwm 8w 117
4 solutions: x = 2, 3%, 8% or LT,
EXERCISE 9E.2
1 Solve for z on the domain 0 < x < 4

b 2sinz=1
2 Solve for z on the domain —27 < z < 27
a 2sinz—+v3=0 b V2cosz+1=0

a 2coszr—1=0

Start at angle 0 and work
around to 47, noting down
the angle every time you

reach points A and B.

¢ tanx =1

¢ tanx = —1
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Example 8 ) Self Tutor
Solve exactly for 0 < z < 37 a sinx = —% b sin2z = —%
The equations both have the form sinf = —%.

There are two points on the unit circle with sine —%.

They correspond to angles ZF and L%

a In this case 6 is simply z, so we
have the domain 0 < x < 3.

The only solutions for this domain

_ n 1lx
are ¥ =< or -

b In this case 6 is 2x.

20 =5, 5> 6 6 6 6
_ 7m 11w 197 23w 31w 357
T= 13> 72> 12> 12 120 13
3 Solve exactly for 0 < z < 37 a cosz=1
4 Solve exactly for 0 <z < 27 a sinz = —%

5 Find the exact solutions of:
a cosa?:—%, 0<xr<brm

c 2cosx+\/§:(), 0< <3
e 4cos3xr+2=0, —m<zx<w

Example 9

Start at angle 0 and work
around to 3, noting down

the angle every time you

reach points A and B.

b cos2x = %

; — _ 1
b sindz = 75

b 2sinx—1=0, —360° <z
d 3cos2x+3=0, 0<z<3mr

w) Self Tutor

Solve tan2z+1=2 for —7m <z < .

tan2zx =1
There are two points on the unit
circle which have tangent 1.
Since —-nw <z <,

=21 < 2x < 27

— & 3 uy 5w

So, 2z=-7, =, 7, or T
_ 7 3 s 5T
T=-7%> "g> 3 O 7§

< 360°

Start at —27 and work
around to 27, noting down
the angle every time you
reach points A and B.
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6 Solve tanz = /3 for 0 <z < 27. Hence solve the following equations for 0 < =z < 27:
a tandr =3 b tan2z =3

7 Solve V3tan3z =1 for 0 <z < .

8 Solve for — 7 <o <

a secx = —2 b /3cosec2z =2 c cotx =0

Example 10 ») Self Tutor

Find the exact solutions of v/3sinz = cosz for 0° < z < 360°.

V3sinz = cosx

sin x

= % {dividing both sides by /3 cosz}
cos T

_ 1
tanx = 7

z =30° or 210°

9 Solve for 0 <z <27 GRAPHING
a sinz —cosz =0 b sinx = —cosx PAC'TAGE
¢ sin3xz = cos3x d sin2z = \/3cos2z By~

-1

Check your answers using the graphing package. ‘

10 Solve for 0 < x < 7: sinz = cosecx

' TRIGONOMETRIC RELATIONSHIPS

There are a vast number of trigonometric relationships. However, we only need to remember a few because
we can obtain the rest by rearrangement or substitution.

SIMPLIFYING TRIGONOMETRIC EXPRESSIONS

For any given angle 6, sinf and cos@ are real numbers. tan@ is also real whenever it is defined. The
algebra of trigonometry is therefore identical to the algebra of real numbers.

An expression like 2sinf 4 3siné compares with 2z + 3z, so 2sinf + 3sinf = 5sin6.

To simplify more complicated trigonometric expressions, we often use the identities:
sin? 6 +cos?20 =1
sin 6 sin? 0 + cos? @ =1 is a special
tan 0 = ,
cos @ form of Pythagoras’ theorem
tan? 6 + 1 = sec? 0

1 + cot? @ = cosec? 0
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We can also use rearrangements of these formulae, such as:

sin?0 =1 — cos® 0 tan 0 = sec? 6 — 1
cos?f =1—sin?6 cot? 0 = cosec? 6 — 1
Example 11 «) Self Tutor
Simplify:
a 3cosf +4cosb b tana —3tana
a 3cosO+4cost = Tcosl b tana —3tana = —2tana
{compare with 3z + 4z = Tz} {compare with x — 3z = —2z}
Example 12 ») Self Tutor
Simplify:
a 2-—2sin’0 b cos?0sinf + sin® 6
a 2 — 2sin%0 b cos® 0sinf + sin® 0
=2(1 —sin?0) = sin#(cos? 6 + sin? §)
=2cos?0 =sinf x 1
{cos?f +sin?0 = 1} =sind
EXERCISE 9F.1
1 Simplify:
a sinf +sinf b 2cosf + cosf ¢ 3sinf —sinf
d 3sinf — 2siné e tanf —3tand f 2cos’0 —5cos? 0
Example 13 ») Self Tutor

Expand and simplify: (cos § — sin 0)?

(cos @ — sin 6)?
= cos?§ — 2cosfsinf + sin® § {using (a —b)? = a® — 2ab+ b*}
= cos? 0 + sin® f — 2 cos fsin 0
=1—2cosfsinf

2 Simplify:
a 3sin?6 + 3cos?6 b —2sin?6 — 2cos? 6 ¢ —cos’f —sin?6
d 3—3sin’0 e 4—4cos?0 f cos® 6+ cosfsin? @
g cos’h—1 h sin?0—1 i 2cos?f—2
1 —sin?6 1 —cos? 6 cos? — 1

=

cos2 6 sin 6 —sin @
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3 Simplify:
. )
a 3tanz — —— b szm ¢ tanzcosx
COos T COos“ &
d sin @ e 3sinx + 2cosxtanx f 2t.anm
tanz sinx
g tanxcotx h sinxcosecz i secxrcotx
] sinzcotz Kk cot x I 2sinx cotx + 3cosx
cosec T cot x
4 Expand and simplify if possible:
a (1+sinf)? b (sina—2)? ¢ (tana —1)2
d (sina+ cosa)? e (sinB3— cosp)? f —(2—cosa)?
5 Simplify:
2 2
a 1—secf tan 0(;0‘& 0+1)
tan= 6 + 1
¢ cos?afsec’?a —1) d (sinz + tanz)(sinz — tanx)
e (2sinf+ 3cosf)? + (3sinf — 2cosh)? f (1 + cosech)(sinf — sin® 0)

g secA—sinAtanA —cos A

FACTORISING TRIGONOMETRIC EXPRESSIONS

Example 14 %) Self Tutor
Factorise:
a cos?a—sin’a b tan?6 — 3tanf + 2
a cos® a — sin® «
= (cosa + sina)(cos a — sin «) {compare with a® — b*> = (a + b)(a — b)}

b tan?0 — 3tan + 2
= (tanf — 2)(tanf — 1) {compare with 2? — 3z +2 = (z —2)(z — 1)}

EXERCISE 9F.2

1 Factorise:

sin® a — cos® a
2sin? 3 — sin 8
3sin® @ — 6sinf
2cos? 6 + 7cosf + 3

a 1—sin’0

¢ tan’a —1

e 2cos¢+ 3cos? ¢
g tan’0+5tanf +6
3tan®a — 2tana

2cot?z —3cotx + 1

i 6cos?a—cosa—1

- e =B = QT

=

sec? B — cosec? 3

m 2sin®z + Tsinzcosz + 3cos? x
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Example 15 ) Self Tutor
Simplify:
2 —2cos20 cosf — sin @
e p 087 SmY
1+ cos@ cos? f — sin2 0
2 —2cos? 0 cosf — sin 6
zz2co8 Y b _cosvzsmy
1+ cos@ cos? § — sin2
_2(1 — cos?6) _ (cos @ —simB)!
o 1+cos91 (cos 6 + sin 0) (cos i —si O],
_ 2(1 #eosB)(1 — cosb) o 1
o ’(;;i—,ees’ﬁ')’l " cosf +sin®
=2(1 — cos¥)
2 Simplify:
a 1—sin?a b tan? 8 — 1 c cos? ¢ — sin? ¢
1—sina tan 8 + 1 cos ¢ + sin ¢
cos? ¢ — sin2 ¢ e sin a 4 cos f 3 —3sin2 0
cos ¢ — sin ¢ sin? o — cos? o 6cosf
2 2
g 1— COS.Q h 1+cott9_ sec 6 i tan® 0
1+ sinf cosec f tan € + cot @ sec — 1
3 Show that:
a (cosf +sinf)? + (cosf —sinf)? = 2 b (2sinf +3cosf)? + (3sinf — 2cosh)? = 13
1 . 1 . .
¢ (1—cosb) (1—|— ) = tanfsin 6 d (1+ - )(51n9—sm29)=cos29
cos 6 sin 6
. cos
e secA—cosA=tanAsin A f — =sech + tanf
— Ssin
i . in6 1 0
g cosa MY Sina + cos a h i + + 57 — 2 cosecl
1—tana 1—cota 1+ cos6 sin 6
sin 0 sin 6 1 1
— =2cotf j = 2sec?d
1—cosf 1+ cosf ! 1—sinf + 1+ sin@ GRAPHING

PACKAGE
Use a graphing package to check these simplifications by graphing each function on the £~

same set of axes. K

Discovery 5 Double angle formulae

What to do:

1 Copy and complete, using angles of your choice as well:

0 sin20 | 2sinf | 2sinfcosf | cos20 | 2cosf | cos? — sin? @
0.631
57.81°
—3.697
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2 Write down any discoveries from your table of values in 1.
3 In the diagram alongside, the semi-circle has radius 1 unit,
and PAB = 6.
APO = ¢ {AAOP is isosceles}
PON =20  {exterior angle of a triangle}

a Find in terms of 0, the lengths of:
i OM ii AM iii ON iv PN
b Use AANP and the lengths in a to show that:

The double angle formulae are

I cosg = 5020 0 cosg = LHeos20 not required for the syllabus
2sin 6 2cost but are very useful.
¢ Hence deduce that:
i sin20 =2sinfcosf ii cos20 =2cos?h—1 \

4 Starting with cos26 = 2cos? — 1, show that:

a 00520:%—1—%00820 b sin?f=1_—

11
5 — 3 cos26

EQUATIONS IN QUADRATIC

Sometimes we may be given trigonometric equations in quadratic form.

For example, 2sin’z +sinz = 0 and 2cos?z +cosz — 1 = 0 are quadratic equations where the
variables are sinxz and cosz respectively.

These equations can be factorised by quadratic factorisation and then solved for z.

Example 16 o Self Tutor

Solve for 0 <z < 27:
a 2sin?z+sinz =0 b 2cos?z+cosz—1=0
a 2sin?z +sinz =0

sinz(2sinz +1) =0

sinz =0 or —2%

2

sinz =0 when

xr=0,m, or 2w

The solutions are: = =0, m, 2=, LT or 27.
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2cos’z +cosz—1=0
(2cosx —1)(cosz+1) =0

cosx = 5 or -1
cosxT = % when
i ol
T =73 or%
The solutions are: = = %, 7, or %’T

EXERCISE 9G
1 Solvefor 0 <oz < 27:
a 2sin?z+sinz=0

d 2sin?z+3sinz+1=0 2

e sin
2 Solve for 0 <oz < 27

a sin’?z+cosz=—1

Review set 9A

b 2cos?z =cosz

r=2—cosx

cosx = —1 when

r =T

¢ 2cos?z+cosz—1=0

f cosx+secx =2

b 2cos?x =3sinz

1 Which of the following graphs displays periodic behaviour?

a Ly b y
6
—4r | =27 O 27| 4rx %
2
) /0 o ir %
v
2 Draw each of the following graphs for 0 < z < 27
a y=osinz b y=cos3z—1 ¢ y=tan2z+4
3 State the minimum and maximum values of:
a 1+sinx b 2cos3z ¢ y=3sin2z d y=cosdxr—1
4 State the period of:
a y=4sinx b y=2cosdx ¢ y=4cos2zx +4 d y=2tan3z
5 Complete the table: Function Period | Amplitude | Domain | Range
y =3sin2x +1
y = tan 2z
y=2cosdzr —3
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6 Find the cosine function represented in the graph.

7 On the same set of axes, graph y = 2cosz and y = |2cosz| for 0 <z < 27.

8 hy
= COS
o T
0:5
e 100° | 200° |/ 300° | 400° '\ 500° | 6007 | 700° 806‘{‘5
—0.5
—1
v
Use the graph of y = cosz to find the solutions of:
a cosz=-0.4, 0<z<800° b cosz=0.9 0<x<600°
9 Solve in terms of 7
a 2sinx=-1 for 0 <o <4n b 2sinz—1=0 for —2r <z <27
c 2sin3z++v3=0 for 0<z<2n d V2cosz—1=0 for 0 <z <4n
10 Simplify:
1 — cos? 6 sin o — cos « 4sin?a — 4 cot2 0
— bh —— c —— d ———
1+ cos@ sin? & — cos? 8 cos a cosecl — 1
cos 0 — secH . . .
11 Show that ————— simplifies to —sin#.
tan 6
12 Find exact solutions for —7 <z < 7:
a tan2x:—\/§ b tan’?z —3=0

Review set 9B

1 Consider the graph alongside. y
a Explain why this graph shows periodic
behaviour.

b State: -
0 W 10 VW 20/

R"

i the period
ii the maximum value
iii the minimum value _5
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2 Find b given that the function y = sinbx, b > 0 has period:
a 3 b 35

3 State the minimum and maximum values of:

a y=>5sinr—3 b y=3cosz+1 ¢ y=4cos2zx+9
4 On the same set of axes, for the domain 0 < x < 2w, sketch:
a y=cosz and y =cosx — 3 b y=tanz and y=2tanzx
¢ y=cosz and y=cos2zx+ 1 d y=sinx and y =3sinz+1
5 The function y = asinbz +c¢, a > 0, b > 0, has amplitude 2, period %, and principal axis
y = —2.
a Find the values of a, b, and c. b Sketch the function for 0 < x < 7.

6 Consider the function y = 2tanz.
a State a function which has the same shape, but has principal axis y = 2.
b Draw y =2tanz and your function from a on the same set of axes, for —27 < z < 27.

7 Consider y = sin(%) on the domain —7 < = < 7. Use the graph to solve, correct to 1 decimal
place:

a sin(%)=-0.9 b sin(3) =3

[—=

wlR

y=sin(F)

Y

8 Find m and n given the following graph of the function y = 2sinmaz + n:

9 Solve for 0 < 2z < 27:

2

a sin“z—sinz—2=0 b 4sin’z=1

10 Simplify:

20 -1

a cos® 6 +sin?0cosb b %
sin 0
s 29

¢ 5—5sin0 g S2f-1

cos 6
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11 Expand and simplify if possible:
a (2sina—1)?
12 Show that:

cos 0 1+ sinf
1+ sinf cos 6

= 2sect

b (cosa — sina)?

b (1+sect) (cosd — cos?) = sin” 0
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Opening problem

At a mathematics teachers’ conference there are 273 delegates present. The organising committee consists
of 10 people.

Things to think about:

a If each committee member shakes hands with every other
committee member, how many handshakes take place?
Can a 10-sided convex polygon be used to solve this
problem?

b If all 273 delegates shake hands with all other delegates,
how many handshakes take place now?

¢ If the organising committee lines up on stage to face the
delegates in the audience, in how many different orders can
they line up?

The Opening Problem is an example of a counting problem.

The following exercises will help us to solve counting problems without having to list and count the
possibilities one by one. To do this we will examine:

e the product principle e counting permutations e counting combinations.

'THE PRODUCT PRINCIPLE

Suppose there are three towns A, B, and C. Four different
roads could be taken from A to B, and two different roads A C
from B to C. B

How many different pathways are there from A to C going
through B?

If we take road 1, there are two alternative roads to complete road 1
our trip.

Similarly, if we take road 2, there are two alternative roads A \/B c

to complete our trip.
road 4

The same is true for roads 3 and 4.

So, there are 2+4+2+2+2 =4 x 2 different pathways from A to C going through B.

Notice that the 4 corresponds to the number of roads from A to B and the 2 corresponds to the number of
roads from B to C.

THE PRODUCT PRINCIPLE

If there are m different ways of performing an operation, and for each of these there are n different ways
of performing a second independent operation, then there are mn different ways of performing the two
operations in succession.

The product principle can be extended to three or more successive independent operations.



Counting and the binomial expansion (Chapter 10) 257

Example 1 ) Self Tutor

P, Q, R, and S represent where Pauline, Quentin, Reiko, and Sam live. There are two different paths
from P to Q, four different paths from Q to R, and 3 different paths from R to S.

R —
Q R

How many different pathways could Pauline take to visit Sam if she stops to see Quentin and then
Reiko on the way?

The total number of different pathways = 2 x 4 x 3 =24 {product principle}

EXERCISE T10A

1 The illustration shows the different map routes for a bus Q R
service which goes from P to S through both Q and R.
How many different routes are possible?

2 In how many ways can the vertices of a rectangle be labelled
with the letters A, B, C, and D:

a in clockwise alphabetical order
b in alphabetical order
¢ in random order?

3 The wire frame shown forms the outline of a box. B
An ant crawls along the wire from A to B.

How many different paths of shortest length lead from
A to B?

A

4 A table tennis competition has 7 teams. In how many different ways can the top two positions be filled
in order of premiership points obtained?

5 A football competition is organised between 8 teams. In how many ways can the top 4 places be filled
in order of premiership points obtained?

6 How many 3-digit numbers can be formed using the digits 2, 3, 4, 5, and 6:

a as often as desired b at most once each?

7 How many different alpha-numeric plates for motor car

registration can be made if the first 3 places are English
alphabet letters and the remaining places are 3 digits from O

0 to 9?7

8 In how many ways can:
a 2 postcards be mailed into 2 mail boxes b 2 postcards be mailed into 3 mail boxes

¢ 4 postcards be mailed into 3 mail boxes?
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Consider the road system illustrated which shows D
the roads from P to Q. A _—>

From A to Q there are 2 paths. M
=

From B to Q there are 3 x 2 = 6 paths.
From C to Q there are 3 paths. CF

from P to Q there are 24 6 + 3 = 11 paths.

Notice that: e When going from B to G, we go from B to E and then from E to G. We multiply
the possibilities.
e When going from P to Q, we must first go from P to A or Pto B or P to C.
We add the possibilities from each of these first steps.

The word and suggests multiplying the possibilities.
The word or suggests adding the possibilities.

Example 2 ) Self Tutor

How many different paths
lead from P to Q?

From PtoAtoBtoCtoQ there are 2 x 3 = 6 paths
or from PtoDtoEtoFtoQ there are 2 paths
or from PtoDtoGtoHtoltoQ thereare 2 x 2 =4 paths.

In total there are 6 + 2 + 4 = 12 different paths.

EXERCISE 10B
1 How many different paths lead from P to Q?

< =2
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c d
P
P@

2 Katie is going on a long journey to visit her family. She B
lives in city A and is travelling to city E. Unfortunately
there are no direct trains. However, she has the choice
of several trains which stop in different cities along the
way. These are illustrated in the diagram.

How many different train journeys does Katie have to
choose from? E

[FACTORIAL NOTATION

In problems involving counting, products of consecutive positive integers such as 8 x 7 x 6 and
6 x5x4x3x2x1 are common.

For convenience, we introduce factorial numbers to represent the products of consecutive positive integers.

For n > 1, n! is the product of the first n positive integers. (n! e el factorial”)
n!l=nn—-—1)(n—-2)(n—3).... x3 x2x1

For example, the product 6 x5 x4 x 3 x 2x 1 can be written as 6!.

Notice that 8 X 7 x 6 can be written using factorial numbers only as

8XTX6x5Xx4x3x2x1 8

8XTxX6= ==
5X4xXx3x2x1 5!

An alternative recursive definition of factorial numbers is n!l=nx(n-—1)! for n>1

which can be extended to n! =n(n —1)(n —2)! and so on.

Using the factorial rule with n =1, we have 1!=1 x 0!

Therefore, for completeness we define ol=1
Example 3 ) Self Tutor
. . 5! 7!
. | = -
Simplify: a 4! b 3 C 3

a 4=4x3x2x1=24
5! 5X4x3x2x1
31T 3x2x1

7! TX6XHX4Xx3x2x1
4!><3!:4><3><2><1><3><2><1:

=5Hx4=20

35
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If your problem involves factorials of large numbers then it is important to cancel as many factors as possible
before using a calculator to evaluate the rest.

!
For example, if you have % in your problem, you will find you cannot calculate 300! on your calculator.
However, we can see that

300! _ 300 X 299 X 208 X 297! _ a0 909 5 998

297! 297!
= 26 730600.
EXERCISE 10C.1
1 Findn! for n=0,1, 2,3, ..., 10.
2 Simplify without using a calculator:
o b O ¢ O a? o Lo ¢
5! 4! 7! 6! 99! 50 x 2!
3 Simplify:
a n! b (n+2)! c (n+1)!
(n—1)! n! (n—1)!
Example 4 ) Self Tutor
Express in factorial form:
a 10x9x8x7 Dx9x8x7
4Xx3x2x1

IOX9IX8XTX6HBXEX4AX3IX2X1 10!
a 10x9x8x7= =

6X5X4x3x2x1 6

I0X9X8XT7T 10X9IXB8XTX6x5x4x3x2x1 10!

4x3x2x1 AX3X2X1X6Xx5x4x3x2x1 4l x6!

4 Express in factorial form:

a 7x6x5 b 10x9 c 11 x10x9x8x7
13 x 12 x 11 e 1 f 4xX3x2x1
3x2x1 6 X5x4 20 X 19 x 18 x 17
Example 5 w) Self Tutor

Write as a product by factorising:

a 8!+ 6! b 10! — 9!+ 8!

a 8! + 6! b 10! — 9! + 8!
=8xT7x6!+ 6! =10x9x8 — 9x8 + 8!
=6/(8xT7+1) =8/(90—-9+1)

= 6! x 57 = 8! x 82
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5 Write as a product by factorising:

a 544! b 11!'—10! c 7'+9! d 12! —10!
e 9!+8!+7! f 71—6!+8! g 12! — 2 x 11! h 3x9 4+ 5x8!
Example 6 ) Self Tutor
Simplify % by factorising. m-6
6
T X 6! —6
N 6
_elz—1y"
8
= 6!
6 Simplify by factorising:
12! — 11! p L0+9 c lo-—s q 0 -9
11 11 89 9!
6!+ 5! — 4! § n!+ (n—1)! nl — (n —1)! h (n+2)!+ (n+1)!
4! (n —1)! n—1 n+3
THE BINOMIAL COEFFICIENT
The binomial coefficient is defined by
(n):n(n—1)(n—2)....(n—’r‘—|—2)(n—'r—|—1): n!
" r(r—1)(r—2)....2 x1 ri(n —r)!
factor form factorial form
The binomial coefficient is sometimes written "C, or CJ'.
Example 7 ) Self Tutor
n n! . 5 11
Use the formula (T) = py—— to evaluate: a (2) b ( = )
5\ 5! 11\ 11!
a (2)_2!(5_2)! b (7)_7!(11—7)!
5l o
2% 3! T4l
_ BX4xX3x2x1 11X I0X9IX8XTXBX5XAX3X2xX1
T 2x1x3x2x1 T 7TX6XB5Xx4X3X2X1x4x3x2x1
=10 7920

24
=330
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EXERCISE 10C.2

1 Use the formula (:‘) = '(L')' to evaluate:
rin—rT);

a (3) b (3) ¢ (5) d (%)

Check your answers using technology.

2 a Use the formula (:,‘) = —' to evaluate:

i (3) i ()

b Show that (7)=(,".) forall neZ¥, r=0,1,2, ... n

n—r

3 Findkif (})=4(,",).

A permutation of a group of symbols is any arrangement of those symbols in a definite order.

For example, BAC is a permutation on the symbols A, B, and C in which all three of them are used.
We say the symbols are “taken 3 at a time”.

The set of all the different permutations on the symbols A, B, and C taken 3 at a time, is
{ABC, ACB, BAC, BCA, CAB, CBA}.

Example 8 w) Self Tutor
List the set of all permutations on the symbols P, Q, and R taken:
a 1 atatime b 2 ata time ¢ 3 at a time.
a {PQR} b {PQ, QP, RP, ¢ {PQR, PRQ, QPR,
PR, QR, RQ} QRP, RPQ, RQP}
Example 9 «) Self Tutor

List all permutations on the symbols W, X, Y, and Z taken 4 at a time.

WXYZ WXZY WYXZ WYZX WZXY WZYX
XWYZ XWZY XYWZ XYZW XZYW XZWY
YWXZ YWZX YXWZ YXZW YZWX YZXW
ZWXY ZWYX ZXWY ZXYW ZYWX ZYXW

There are 24 of them.

For large numbers of symbols, listing the complete set of permutations is absurd. However, we can still
count them by considering the number of options we have for filling each position.
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Suppose we want to find the number of different permutations on the symbols A, B, C, D, E, F, and G,
taken 3 at a time.

There are 3 positions to fill:

1st 2nd 3rd
In the 1st position, any of the 7 symbols could be used, so we have -
7 options.

1st 2nd 3rd
This leaves any of 6 symbols to go in the 2nd position, and this leaves

. .. 71615

any of 5 symbols to go in the 3rd position.

1st 2nd 3rd

So, the total number of permutations =7 X 6 x 5 {product principle}
TX6XHX4x3x2xX1
4X3x2x1
7! 7!

= — Oor
41 (7 —3)!

The number of permutations on n distinct symbols taken 7 at a time is:

n!

(n—r)!

nXxn—-—1)xn—2)X..x(n—r+1)=

7 of these

If we are finding permutations on the complete set of n symbols, as in Example 9, then r = n, and the
number of permutations is n!.

Example 10 ) Self Tutor

A chess association runs a tournament with 16 teams. In how many different ways could the top
5 positions be filled on the competition ladder?

Any of the 16 teams could fill the ‘top’ position.
Any of the remaining 15 teams could fill the 2nd position.
Any of the remaining 14 teams could fill the 3rd position.

Any of the remaining 12 teams could fill the 5th position.

16 | 15[ 14 | 13 | 12 |
1st 2nd 3rd 4th 5th

The total number of permutations = 16 x 15 x 14 x 13 x 12
16!

11!

= 524160

So the top 5 positions could be filled in 524 160 ways.
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Example 11 ) Self Tutor

The alphabet blocks A, B, C, D, and E are placed in a row in front of you.
a How many different permutations could you have?
How many permutations end in C?

b
¢ How many permutations have the form |...|A]..|B]..]| ?
d

How many begin and end with a vowel (A or E)?

a There are 5 letters taken 5 at a time.
.. the total number of permutations = 5 x 4 x 3 x 2 x 1 = 5! = 120.
b _ C must be in the last position. The other 4 letters could go into
4131211
.... the remaining 4 places in 4! ways.

any others the number of permutations = 1 x 4! = 24.

here

C here

c A goes into 1 place. B goes into 1 place. The remaining 3 letters
'y 'y
| |

go into the remaining 3 places in 3! ways.
A B .. the number of permutations = 1 x 1 x 3! = 6.

] The other one must go into the last position.

d A or E could go into the 1st position, so there are two options.
I’y
|

Aolr E  remainder The remaining 3 letters could go into the 3 remaining places in

of AorE 3! ways.
the number of permutations = 2 x 1 x 3! = 12.

EXERCISE 10D
1 List the set of all permutations on the symbols W, X, Y, and Z taken:

a 1 atatime b two at a time ¢ three at a time.
2 List the set of all permutations on the symbols A, B, C, D, and E taken:
a 2 atatime b 3 at a time.
3 In how many ways can:
a b different books be arranged on a shelf
b 3 different paintings be chosen from a collection of 8, and hung in a row
¢ a signal consisting of 4 coloured flags in a row be made if there are 10 different flags to choose

from?

4 A captain and vice-captain are to be selected from a team of 11 cricketers. In how many ways can this
be done?

5 Suppose you have 4 different coloured flags. How many different signals could you make using:

a 2 flags in a row b 3 flags in a row ¢ 2 or 3 flags in a row?

6 Nine boxes are each labelled with a different whole number from 1 to 9. Five people are allowed to
take one box each. In how many different ways can this be done if:
a there are no restrictions
b the first three people decide that they will take even numbered boxes?
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7 a How many different permutations on the letters A, B, C, D, E, and F are there if each letter can
be used once only?
b How many of these permutations:
i endin ED ii begin with F and end with A
ifi begin and end with a vowel (A or E)?

8 How many 3-digit numbers can be constructed from the digits 1, 2, 3, 4, 5, 6, and 7 if each digit may
be used:

a as often as desired b only once ¢ once only and the number must be odd?

and 9 using each digit at most once. How many such numbers:

9 3-digit numbers are constructed from the digits 0, 1, 2, 3, 4, 5, 6, 7, 8,
cannot start with 0

A 3-digit numberj

a can be constructed b endinb

¢ endin0 d are divisible by 57 \
10 Arrangements containing 5 different letters from the word TRIANGLE =S
are to be made. How many possible arrangements are there if: v'

a there are no restrictions A

<’
b the arrangement must start with R and end with A or E o4
¢ the arrangement must include the letter G?

Example 12 %) Self Tutor

There are 6 different books arranged in a row on a shelf. In how many ways can two of the books,
A and B, be together?

Method 1: We could have any of the following locations for A and B

A B X x x X

B A x x x X

x A B x x X If we consider any one of these,
x B A x x X the remaining 4 books could be
X x A B x x 10 of these placed in 4! different orderings.
x x B A x x

¥« %X x A B x total number of ways

«x %X x B A x =10 x 4! = 240.

X X X X A B

X X x x B A

Method 2: A and B can be put together in 2! ways (AB or BA).

Now consider this pairing as one book (effectively tying a string around them) which
together with the other 4 books can be ordered in 5! different ways.

the total number of ways = 2! x 5! = 240.

11 In how many ways can 5 different books be arranged on a shelf if:
a there are no restrictions b books X and Y must be together
¢ books X and Y must not be together?

12 10 students sit in a row of 10 chairs. In how many ways can this be done if:

a there are no restrictions b students A, B, and C insist on sitting together?
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13 3 boys and 3 girls are to sit in a row. How many ways can this be done if:
a there are no restrictions b there is a girl at each end

¢ boys and girls must alternate d all the boys sit together?

14 How many three-digit numbers can be made using the digits 0, 1, 3, 5, and 8 at most once each, if:
a there are no restrictions b the numbers must be less than 500
¢ the numbers must be even and greater than 300?

15 Consider the letters of the word MONDAY. How many permutations of four different letters can be
chosen if:

a there are no restrictions b at least one vowel (A or O) must be used

¢ the two vowels are not together?

16 Alice has booked ten adjacent front-row seats for a basketball
game for herself and nine friends.

a How many different arrangements are possible if there
are no restrictions?

b Due to a severe snowstorm, only five of Alice’s friends
are able to join her for the game. In how many different
ways can they be seated in the 10 seats if:

i there are no restrictions
ii any two of Alice’s friends are to sit next to her?

Discovery 1 Permutations in a circle

There are 6 permutations on the symbols A, B, and C in a line. These are:
ABC ACB BAC BCA CAB CBA.

However in a circle there are only 2 different permutations on these 3 symbols. They are the only
possibilities with different right-hand and left-hand neighbours.

B C Permutations in a circle are
AQ AQ not required for the syllabus.
C B

In contrast, these three diagrams show the same cyclic permutation:
B A C
@ B A

1 Draw diagrams showing different cyclic permutations for:

What to do:

a one symbol: A b two symbols: A and B
¢ three symbols: A, B, and C d four symbols: A, B, C, and D
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2 Copy and complete: | Number of symbols | Permutations in a line | Permutations in a circle
1
2
3 6 = 3! 2 =2I
4

3 If there are n symbols to be arranged around a circle, how many different cyclic permutations are
possible?

A combination is a selection of objects without regard to order.

For example, the possible teams of 3 people that can be selected from A, B, C, D, and E are:

ABC ABD ABE ACD ACE ADE
BCD BCE BDE
CDE

There are 10 combinations in total.

Now given the five people A, B, C, D, and E, we know that there are 5 x 4 x 3 = 60 permutations for
taking three of them at a time. So why is this 6 times larger than the number of combinations?

The answer is that for the combinations, order is not important. Selecting A, B, and C for the team is the
same as selecting B, C, and A. For each of the 10 possible combinations, there are 3! = 6 ways of ordering
the members of the team.

In general, when choosing r objects from n objects,

number of combinations = number of permutations - r!
n!
= =l
(n—mr)!

n!

rl(n —r)!

This is the binomial coefficient we encountered in Section C.

. L n!
The number of combinations on n distinct symbols taken 7 at a time is (2) = ﬁ .
rl(n —r)!
Example 13 ) Self Tutor
How many different teams of 4 can be selected from a squad of 7 if:
a there are no restrictions b the teams must include the captain?

a There are 7 players up for selection and we want any 4 of them.
There are (Z) = 35 possible combinations.
b The captain must be included and we need any 3 of the other 6.

There are () x () =20 possible combinations.
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Example 14 ) Self Tutor

A committee of 4 is chosen from 7 men and 6 women. How many different committees can be
chosen if:

a there are no restrictions b there must be 2 of each sex
¢ there must be at least one of each sex?

a Thereare 74 6 =13 people up for selection and we want any 4 of them.

There are (143) = 715 possible committees.

b The 2 men can be chosen out of 7 in (;) ways.

The 2 women can be chosen out of 6 in (g) ways.

there are ( ;) X (g) = 315 possible committees.

c The total number of committees
= the number with 3 men and 1 woman + the number with 2 men and 2 women
+ the number with 1 man and 3 women
(T 6 7 6 7 6
= () x (D) + ) xG)+ (1) x(3)
= 665

or The total number of committees

(143) — the number with all men — the number with all women
() = (D) x(5) = (6) x (2)

665

EXERCISE 10E

1 Determine whether the following are examples of combinations
or permutations:

For combinations,
the order of selection

a making a 3-digit number using the digits 1, 2, 3, 4, and 5 at does not matter.

most once each
selecting a committee of 3 people from a list of 5

¢ seclecting the chairperson and treasurer from a committee of
8 people

d selecting 2 pieces of fruit to take to school from a bowl of
10 pieces.

2 List the different teams of 4 that can be chosen from a squad of 6 (named A, B, C, D, E, and F).

Check that the formula (:f) = %')' gives the total number of teams.
ri{n—r)

How many different teams of 11 can be chosen from a squad of 17?

Candidates for an examination are required to answer 5 questions out of 9.
a In how many ways can the questions be chosen if there are no restrictions?
b If question 1 was made compulsory, how many selections would be possible?

How many different committees of 3 can be selected from 13 candidates?

(-3

How many of these committees consist of the president and 2 others?
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6

10

11

12

13
14

15

16

17

18

a How many different teams of 5 can be selected from a squad of 127
b How many of these teams contain:
i the captain and vice-captain i exactly one of the captain or the vice-captain?

A team of 9 is selected from a squad of 15. 3 particular players must be included, and another must be
excluded because of injury. In how many ways can the team be chosen?
In how many ways can 4 people be selected from 10 if:

a one particular person must be selected

b two particular people are excluded from every selection

¢ one particular person is always included and two particular people are always excluded?

A committee of 5 is chosen from 10 men and 6 women. Determine the number of ways of selecting
the committee if:

a there are no restrictions b it must contain 3 men and 2 women
¢ it must contain all men d it must contain at least 3 men

e it must contain at least one of each sex.

A committee of 8 is chosen from 9 boys and 6 girls. In how many ways can this be done if:
a there are no restrictions b there must be 5 boys and 3 girls
¢ all the girls are selected d there are more boys than girls?
A music class consists of 5 piano players, 7 guitarists, and 4 violinists. A band of 1 piano player,

3 guitarists, and 2 violinists must be chosen to play at a school concert. In how many different ways
can the band be chosen?

A committee of 5 is chosen from 6 doctors, 3 dentists, and 7 others.
Determine the number of ways of selecting the committee if it is to contain:
a exactly 2 doctors and 1 dentist b exactly 2 doctors

¢ at least one person from either of the two given professions.

How many diagonals does a 20-sided convex polygon have?

There are 12 distinct points A, B, C, D, ...., L on a circle. Lines are drawn between each pair of
points.

a How many lines: i are there in total ii pass through B?

b How many triangles: i are determined by the lines i have one vertex B?

How many 4-digit numbers can be constructed for which the digits are in ascending order from left to
right? You cannot start a number with 0.

a Give an example which demonstrates that:

() > (D) + () x(5) + ) x(G) + B)x () + () < () =(¥)-

b Copy and complete:
(M) < () + (7)< (7)) + (B x (7)) e+ () < (1) + (M) x () = e

In how many ways can 12 people be divided into:

a two equal groups b three equal groups?

Answer the Opening Problem on page 256.
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'BINOMIAL EXPANSIONS
Consider the cube alongside, which has sides of length
(a+b) cm. @
bem
/

The cube has been subdivided into 8 blocks by making 3 cuts
parallel to the cube’s surfaces as shown. \\

We know that the total volume of the cube is (a + b)® cm3. acm
However, we can also find an expression for the cube’s volume
by adding the volumes of the 8 individual blocks.

We have: 1block axaxa acm bem bem

3 blocks axaxb
3 blocks axbxb
1block bxbxb ANIMATION

", the cube’s volume = a® + 3a?b + 3ab® + b° =a
(a+b) = a® + 3a®b + 3ab® + b i
The sum a + b is called a binomial as it contains two terms.
Any expression of the form (a + b)™ is called a power of a binomial.

All binomials raised to a power can be expanded using the same general principles. In this chapter, therefore,
we consider the expansion of the general expression (a + b)" where n € N.

Consider the following algebraic expansions:

(a+b)l=a+b (a+b) = (a+b)(a+b)?

(a+0)* = a® + 2ab + V? = (a + b)(a® + 2ab + b?)
= a® + 2a*b + ab® + a*b + 2ab* + b*
=a® + 3a%b + 3ab® + b3

The binomial expansion of (a + b)2 is a® 4+ 2ab + b2,
The binomial expansion of (a + b)® is a® + 3a?b + 3ab® + b>.

Discovery 2 The binomial expansion

What to do:

1 Expand (a+b)* in the same way as for (a+ b)3 above.
Hence expand (a +b)® and (a + b)°.

2 The cubic expansion (a + b)® = a® 4 3a?b + 3ab? + b3 contains 4 terms. Observe that their
coefficients are: 1 3 3 1

a What happens to the powers of a and b in each term of the expansion of (a + b)3?

b Does the pattern in a continue for the expansions of (a + b)%, (a+b)°, and (a+ b)%?
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¢ Write down the triangle of n=1 1 1

coefficients to row 6: n=% 1 2 1
m= 3 1 3 3 l«—r0W 3

3 The triangle of coefficients in ¢ above is called Pascal’s triangle. Investigate:
a the predictability of each row from the previous one
b a formula for finding the sum of the numbers in the nth row of Pascal’s triangle.

4 a Use your results from 3 to predict the elements of the 7th row of Pascal’s triangle.
b Hence write down the binomial expansion of (a + b)”.
¢ Check your result algebraically by using (a+b)” = (a+b)(a+b)® and your results from 1.

From the Discovery we obtained (a + b)* = a* + 4a%b + 6a%b* + 4ab® + b*
= a* + 4a>b' + 6a%b% + 4a'b® + b*
Notice that: e As we look from left to right across the expansion, the powers of a decrease by 1,
while the powers of b increase by 1.
e The sum of the powers of a and b in each term of the expansion is 4.
e The number of terms in the expansionis 4+ 1 = 5.
e The coefficients of the terms are row 4 of Pascal’s triangle.

For the expansion of (a + b)" where n € N:

e As we look from left to right across the expansion, the powers of a decrease by 1, while the powers
of b increase by 1.

e The sum of the powers of a and b in each term of the expansion is n.
e The number of terms in the expansion is n + 1.
e The coefficients of the terms are row n of Pascal’s triangle.

In the following examples we see how the general binomial expansion (a + b)" may be put to use.

Example 15 ) Self Tutor
Using (a +b)® = a® + 3a®b + 3ab? + b3, find the binomial expansion of:
a (2z+3)3 b (x-5)3
a In the expansion of (a + )3 we substitute a = (2z) (Brackets — essential!)

and b= (3). \
(2z +3)3 = (22)® + 3(22)2(3) + 3(22)'(3)% + (3)3
= 82° 4 3627 + 5da + 27
b We substitute a = (z) and b= (-5)
(z—5)° = (2)° +3(2)*(=5) + 3(2)(—5)* + (-5)°
=% — 1522 + 75z — 125
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Example 16 ) Self Tutor
Find the: 5
a bth row of Pascal’s triangle b binomial expansion of (x — 2) .
T
a l«——————the Oth row, for (a + b)°
1 1«————the Ist row, for (a+b)!
1 2 1
1 3 3 1
1 4 6 4 1

1 5 10 10 5 1= the 5th row, for (a + b)®

b Using the coefficients obtained in @, (a + b)® = a® + 5a*b + 10a3b? + 10a%b> + 5ab* + b°
Letting a=(xz) and b= (_—2), we find
xX

(- 3)5 = (@) +5()* () +10(2)° (%2)2 +10(x)? (*72)3 +5(2) (*72)4 + (;2)5

T

=%~ 1023 + 400 — =+ = — =

EXERCISE 10F

1 Use the binomial expansion of (a + b)® to expand and simplify:

a (p+gq)? b (z+1)3 ¢ (r—3)3
d (2+z)3 e (3z-1)3 f (2z+5)3
g (2a—b)° h (32-1)° i <2x+1)3
3 T
2 Use (a+0b)*=a*+4a®b+ 6a%b? + 4ab® + b* to expand and simplify:
a (1+a)* b (p—q* c (z-2)°
d (3-x) e (1+2z)! f (2z—3)*
1\? 1\?
g (2z+b)? h (ac—l——) i <2x——>
T T
3 Expand and simplify:
5
a (z+2)° b (z—2y)° c (1+2z)° d (m— l)
T
4 Expand and simplify (2 +z)5 + (2 — x)°.
5 a Write down the 6th row of Pascal’s triangle.
b Find the binomial expansion of:
6
i (z+2)° i (22— 1) i (x + 1)
x

6 Expand and simplify:
a (1+v2)° b (V5+2)* c (2—2)°
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3
7 Find M, giving your answer in the form ot b\/§, where a, b, c € Z.
4+/3 c
8 a Expand (2+ x)S. b Hence find the value of (2.01).

9 The first two terms in a binomial expansion are: (a + b)3 = 8 + 12e% + ....

a Find a and b. b Hence determine the remaining two terms of the expansion.
10 Expand and simplify (2z + 3)(x + 1)%.
11 Find the coefficient of:

a a®b? in the expansion of (3a +b)° b a3b® in the expansion of (2a + 3b)°.
Historical note Binomial Theorem

The Binomial Theorem is one of the most important results in mathematics.

Multiplying out binomial terms is a basic process which dates back to the beginning of algebra.
Mathematicians had noticed relationships between the coefficients for many centuries, and Pascal’s
triangle was certainly widely used long before Pascal.

Isaac Newton discovered the Binomial Theorem in 1665, but he did not publish his results until much
later. Newton was the first person to give a formula for the binomial coefficients. He did this because
he wanted to go further. Newton’s ground-breaking result included a generalisation of the Binomial
Theorem to the case of (a + b)" where n is a rational number, such as 1. This results in a sum
with an infinite number of terms, called an infinite series. In doing this, Newton was the first person to

confidently use the exponential notation that we recognise today for both negative and fractional powers.

In the previous Section we saw how the coefficients of the binomial expansion (a + b)" can be found

in the nth row of Pascal’s triangle. These coefficients are in fact the binomial coefficients (Z) for
r=20,1, 2, ..., n.

The Binomial Theorem states that
(a+b)" =a"+ (7)a" " "o+..+ (7)a""b" + ...+ b"

where () is the binomial coefficient of a"~"b" and r=0,1,2,3, .., n.

The general term or (r + 1)th term in the binomial expansion is T, 4+1 = (:f) a”~"b".

n
Using sigma notation we write (a + b)" = Zo (")a"—Tbr.
r=
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Example 17 ») Self Tutor

12
. . 1
Write down the first three and last two terms of the expansion of (2x 4F —) .

T

Do not simplify your answer.
<2x + 1)12 = (22)2 + ('2) (22)" (1)1 +(12) (22)™0 (1)2 4o
€T 1 x 2 x
" L/ 1\ 12

Example 18 ) Self Tutor
40\ 14
Find the 7th term of (335 = —2> . Do not simplify your answer.
T
= (32), b=(— d n=14
a = (3z), —<?>, and n=

Given the general term 7,41 = (Z) a”"b", welet r=26

L To= () 6o (S2)

xT

Example 19 «) Self Tutor

12
In the expansion of (a:2 + é) , find:
x

a the coefficient of 26 b the constant term.

a = (2?), b:<i>, and n =12

xT

T
*. the general term 71,4 = (lf) ()12 <£>
T
= (12) 22 & 4"
I/"

( 1T2 ) 4r$24—37’

a lf 24—-3r=6 b If 24—3r=0
then 3r =18 then 3r =24
r=206 cor=28
T, = (162) 46,6 Ty = (182) 4820
the coefficient of z° is . the constant term is

('7) 4 or 3784704, (') 4® or 32440320.
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EXERCISE 10G

1 Write down the first three and last two terms of the following binomial expansions. Do not simplify
your answers.

9y 15 31 20
a (1+20)1 b (33: + —) c (2x - —)
x x
2 Without simplifying, write down:
a the 6th term of (2z + 5)'° b the 4th term of (2?4 y)g
o\ 17 121
¢ the 10th term of (x - —) d the 9th term of (2:52 - —) .
X X

3 In the expansion of (2x + 3)'2, find:
a the coefficient of z8 b the coefficient of z°.

4 In the expansion of (1 —3z)!°, find:

a the coefficient of 2 b the coefficient of 7.

9
5 In the expansion of (a:2 + E) , find:
x

a the coefficient of z'2 b the constant term ¢ the coefficient of 276,
6 Consider the expansion of (z +b)".
a Write down the general term of the expansion.

b Find b given that the coefficient of z* is —280.

7 Find the term 1rllgependent of z in the expansmngof: [The e w%
2 3 is the constant term.

8 Find the coefficient of:

6
a 2'0 in the expansion of (3 + 222)10 b 22 in the expansion of <2m2 - 3)
€T
. . 6 : . 1\ 12
¢ %7 in the expansion of (2z% — 3y) d z'2 in the expansion of (23:2 - —) :
€T

8

9 In the expansion of (k + x)8, the coefficient of ° is 10 times the coefficient of z°. Find the value

of k.

10 The coefficient of #° in the expansion of (az —2)7 is twice the coefficient of z° in the expansion of
(a +z)°. Find the value of a.

6
11 In the expansion of (aa: + E) , the constant term is 20 000, and the coefficient of z* is equal to the
xr
coefficient of 22.

a Show that ab=10 and b= %‘1

b Find a and b given that they are both positive.



276 Counting and the binomial expansion (Chapter 10)

Example 20 %) Self Tutor

Find the coefficient of z° in the expansion of (z + 3)(2x — 1)°.

= (e + )20 (§) 2% + (§) 22" — )
| & |
(1)

So, the terms containing ° are (g) 2425 from (1)

and -3 (?) 2525 from (2)

the coefficient of z° is  (§) 2% —3(9)2° = 336
12 Find the coefficient of 2% in the expansion of (z + 2)(z? + 1)8.
13 Find the term containing 2% in the expansion of (2 — z)(3z + 1)°.

14 Find the coefficient of z* in the expansion of:
a (3—2x2)7 b (1+3z)(3—22)7
15 Find:

a the coefficient of 27 in the expansion of (22 — 3)(2x — 5)8

6
b the term independent of z in the expansion of (1 — x2) (x + z) .
T

16 When the expansion of (a+bx)(1—z)® is written in ascending powers of z, the first three terms are
3 — 20z + cz2. Find the values of a, b, and c.

Example 21 ) Self Tutor

Consider the expansion of (1 + 3z)™, where n € Z*.

If the coefficient of z2 is 90, find the value of n.
(1+3z)" has general term  T,41 = (") 177" (3z)"
~ (1)

Ts = (%) 3%? is the 2 term.

Since the coefficient of 22 is 90, (g) x 9 =90
n(n —1)
2
soon?=n=20
Son?=n—20=0
(n=5)(n+4)=0
n=>5 {n >0}

=10
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17 The coefficient of 2 in the expansion of (1 + 2z)" is 112. Find n.

n
18 The coefficient of 22 in the expansion of (1 — g) is % Find n.

19 The third term of (1+z)" is 36x2. Find the fourth term.

20 Suppose (1+kz)® =1— 12z + 602> —..... Find the values of k and n.

Review set 10A

10
11

12

13

14

15

. R n! n! + (n +1)!
Simplify: a o b —

Eight people enter a room and each person shakes hands with every other person. How many hand
shakes are made?

The letters P, Q, R, S, and T are to be arranged in a row. How many of the possible arrangements:
a end with T b begin with P and end with T?

a How many three digit numbers can be formed using the digits 0 to 9?
b How many of these numbers are divisible by 5?

The first two terms in a binomial expansion are: (a + b)* = €% — 4e?® + ...

a Find a and b. b Copy and complete the expansion.

Expand and simplify (v/3 + 2)°, giving your answer in the form a + bv/3, a, b € Z.
8
Find the constant term in the expansion of (3:1:2 + l) .
x

Find ¢ given that the expansion (14 cz) (14 )" includes the term 2223,

Steven and nine of his classmates are in a school committee. The committee must select a president,
vice-president, and secretary. In how many ways can this be done if:
a there are no restrictions b Steven must be the president

¢ Steven cannot hold any of the key positions?
Find the coefficient of 3 in the expansion of (z + 5)°.

A team of five is chosen from six men and four women.
a How many different teams are possible with no restrictions?
b How many different teams contain at least one person of each sex?

12
. 5 . 5 3
Find the coefficient of ¢ in the expansion of <2x = —) .

2

Find the coefficient of ® in the expansion of (2 + 3)(z — 2)°.

9
Find the possible values of a if the coefficient of 23 in (2:10 4F %) is 288.
ax

In the expansion of (kz — 1)%, the coefficient of z* is equal to four times the coefficient of x2.
Find the possible values of k.
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Review set 10B

1

10

11

12
13

14

15

Alpha-numeric number plates have two letters followed by four digits. How many plates are
possible if:

a there are no restrictions b the first letter must be a vowel
¢ no letter or digit may be repeated?

a How many committees of five can be selected from eight men and seven women?
b How many of the committees contain two men and three women?

¢ How many of the committees contain at least one man?
Use the binomial expansion to find:
a (z—2y)? b (3z+2)*

Find the coefficient of 2* in the expansion of (2z + 5)°.

6
Find the term independent of z in the expansion of (2:172 — l) .
T

_ /93
Find M, giving your answer in the form a + byv/2 where a, b € Z.
VZ+1
Kristen’s school offers 6 Group A subjects, 8 Group B subjects, and 5 Group C subjects. Kristen

must select 2 Group A, 3 Group B, and 1 Group C subject to study. In how many ways can she
make her selection?

Find the coefficient of #* in the expansion of (z — 3)(2z + 1)°.

How many arrangements containing 4 different letters from the word DRAGONFLY are possible if:
a there are no restrictions b the letters G and Y must not be included
¢ the arrangement must start with R and end with N?

Find the possible values of ¢ if the constant terms in the expansions of (:c3 4F %) and
T
4
3 q
(x + ;) are equal.
Eight people enter a room and sit in a row of eight chairs. In how many ways can the sisters Cathy,
Robyn, and Jane sit together in the row?
Find k in the expansion (m — 2n)'% = m1% — 20m%n + km®n? — .... + 1024n10.

A team of eight is chosen from 11 men and 7 women. How many different teams are possible if
there:

a are no restrictions b must be four of each sex on the team
¢ must be at least two women on the team d must be more women than men?

The coefficient of 22 in the expansion of (1 4F g) is %. Find n.

The first three terms in the expansion of (14 kz)" are 1—4z+ 2222, Find k and n.
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Opening problem

An aeroplane in calm conditions is flying at 800 kmh~! due
east. A cold wind suddenly blows from the south-west at
35 kmh~!, pushing the aeroplane slightly off course.

Things to think about:

a How can we use an array of numbers to represent the
speed and direction of the plane?

What operation do we need to perform to find the effect of the wind on the aeroplane?
¢ Can you determine the resulting speed and direction of the acroplane?

'VECTORS AND SCALARS

In the Opening Problem, the effect of the wind on the aeroplane is determined by both its speed and its
direction. The effect would be different if the wind was blowing against the aeroplane rather than from
behind it.

Quantities which have only magnitude are called scalars.

Quantities which have both magnitude and direction are called vectors.

The speed of the plane is a scalar. It describes its size or strength.
The velocity of the plane is a vector. It includes both its speed and also its direction.

Other examples of vector quantities are:

e acceleration e force e displacement e momentum

For example, farmer Giles needs to remove a fence post. He starts
by pushing on the post sideways to loosen the ground. Giles has a
choice of how hard to push the post, and in which direction. The
force he applies is therefore a vector.

From previous courses, you should have seen how we can represent a vector quantity using a directed
line segment or arrow. The length of the arrow represents the size or magnitude of the quantity, and the
arrowhead shows its direction.

POSITION VECTORS

Consider the vector from the origin O to the point A. We call this the position vector of point A.

e This position vector could be represented by

A —>
OA or a or a.
2 I !
bold used in textbooks used by students
(0] e The magnitude or length could be represented by

|OA| or OA or |a| or |@|.
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Now consider the vector from point A to point B. We say that:

—
B e AB is the vector which originates at A and

/ terminates at B

A Nl 9 .
e AB is the position vector of B relative to A.

When we plot points in the Cartesian plane, we move first in the z-direction and then in the y-direction.

For example, to plot the point P(2, 5), we start at the Ly
origin, move 2 units in the z-direction, and then 5 units in the

y-direction. F(2.5)

A

We therefore say that the vector from O to P is OP = (;)

sY

Oy 2

A

Suppose that i = <(1)> is a vector of length 1 unit in the positive x-direction

and that j = <(1)> is a vector of length 1 unit in the positive y-direction.

i and j are called unit vectors
because they have length 1.

We can see that moving from O to P is equivalent to 2 lots of i Ay
plus 5 lots of j.

_,
OP = 2i + 5j

(3)=2(6) (%)

The point P(z, y) has pesition vector OP = (‘;) =zi + yj.

N

component form  unit vector form

N

i= ((1)) is the base unit vector in the x-direction.

j= (2) is the base unit vector in the y-direction.

The set of vectors {i, j} is the standard basis for the 2-dimensional (z, y) coordinate system.
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All vectors in the plane can be described in terms of the base unit vectors i and j.

For example: a=23i—j
b = —4i+ 3j

51 j b
—i =i —i i

THE ZERO VECTOR

The zero vector, 0, is a vector of length 0. [The position vector of any]

. . . . int relative to itself, is 0.
It is the only vector with no direction. FORE TSRS e

In component form, 0 = (8)

N
When we write the zero vector by hand, we usually write 0.

VECTOR EQUALITY

Two vectors are equal if they have the same magnitude and direction.

In component form, their z-components are equal and their y-components are equal.

Equal vectors are parallel and in the same direction, and are

equal in length. The arrows that represent them are translations 7
of one another. a /
a

Example 1 ) Self Tutor
—> —
Ay a Write OA and CB in component form and in unit
vector form.
B b Comment on your answers in a.
— /
C A
REG) T
A\
— 3 - 3
a OA(1>3i+j CB<1)3i+j

—> —
b The vectors OA and CB are equal.
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NEGATIVE VECTORS
- e . . .
B AB and BA have the same length, but they have opposite directions.
N We say that BA is the negative of AB, and write BA = —AB.
BA
A
. 2 . . -2 —2
In the diagram we see the vector a = 3 and its negative —a = { 3 )
¥ 13 3| f-a
2
If a— aj then —a — —aq . aand —a a.re parallel
as —as and equal in length,

but opposite in direction.

EXERCISE T11A

1 Write the illustrated vectors in component form and in unit vector form:

a b c
/
d e f /
2 Write each vector in unit vector form, and illustrate it using an arrow diagram:

+ (9) * (0) - (5) ¢ (5)

3 a Find in component form and in unit vector form:

A ‘B . " = . =2

. i AB ii BA iii BC

. — — . =

iv DC v AC vi DE
E b Which two vectors in a are equal? Explain your answer.

°
4 . ¢ Which two vectors in a are negatives? Explain your
D C

ansSwer.
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4 Write in component form and illustrate using a directed line segment:

a i+2j b —i+ 3 c —5j d 4i— 2j

5 Write down the negative of:

+ (3)  (3) - (%) ‘

1| [THE MAGNITUDE OF A VECTOR

Consider vector a = (;) =2i + 3j.

The magnitude or length of a is represented by |a|.

By Pythagoras, |a|>=22+432=44+9=13
oo |a] =+13 units {since |a|> 0}

2

. aq _ . . . g o D) 5
If a= (a ) = a1i + aj, the magnitude or length of ais |a| = \/a; + a5

Example 2 %) Self Tutor

If p:(_35> and q = 2i — 5j, find:

a [p| b [q]

a p=<_35> b q:2i—5j:<_25>
oIl = VPP ~ lal= VEF P

= V34 units = V29 units
UNIT VECTORS
A unit vector is any vector which has a length of one unit.

i= ((1] ) and j = ((1)) are the base unit vectors in the positive
x and y-directions respectively.
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Example 3 o) Self Tutor

1
3

Find £ given that ( i

) is a unit vector.

1
Since ( k3 > is a unit vector, (—3)?2+k2=1

s HkE=1

1+ k=1 {squaring both sides}

2_8
k_9

k=43

EXERCISE 11B
1 Find the magnitude of:

3 —4
() ()

2 Find the length of:
ai+j b 5i — 12j c —i+4j d 3i e kj

4 Find k for the unit vectors:
0 k k k
(1) () ) e(t) e

5 Given v = (i) and |v| = /73 units, find the possible values of p.

|OPERATIONS WITH PLANE VECTORS

VECTOR ADDITION

(]

3 Which of the following are unit vectors?

() (D)

(1]

(1]

Consider adding vectors a = (Zl > and b = <b1 >
2

Notice that:

e the horizontal step for a + b is a; + by
e the vertical step for a + b is as + bs.

[ m A (a1 +b
If a= <a2> and b = (bz) then a + b = <a2+b2>'

wl— wlN
N——
(-
VRS
| |
[S2] [N ({9
N———
o
/N
|

+ b
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Example 4 o) Self Tutor

If a= ( _13) and b = (i), find a + b. Check your answer graphically.

atb= < 13) + <3> Graphical check:

VECTOR SUBTRACTION

To subtract one vector from another, we simply add its negative.

If a:<a1> and b:<bl> ."’
as by ."’

If a= (al) and b = (bl>, then a —b = (al_bl).
as by az — ba

Example 5 o) Self Tutor
Given p = (_32), q= <i>, and r = (:;), find:

aq-p b p-q-r

a — b —q-r
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SCALAR MULTIPLICATION
A scalar is a non-vector quantity. It has a size but no direction.

We can multiply vectors by scalars such as 2 and —3, or in fact any k € R.

If a is a vector, we define 2a=a+a and 3a=a+a+a

so —3a=3(—a)=(—a)+ (—a)+ (—a).
Ifais / then

So, 2a is in the same direction as a but is twice as long as a
3a is in the same direction as a but is three times longer than a
—3a  has the opposite direction to a and is three times longer than a.

If a is a vector and k is a scalar, then ka is also a vector and we are

performing scalar multiplication.
VECTOR SCALAR

If k>0, ka and a have the same direction. MULTIPLICATION

If k<0, kaand a have opposite directions. oA
If k=0, ka=0, the zero vector. O,

If k is any scalar and v = (vl ), then kv = (kvl).
Vo kvy

Notice that:

() () ()

Example 6 ) Self Tutor
4 2 .
If p= 1 and q = _3 find: a 3q b p+2q c 5p—3q
a 3q b p+2q c ip—3q

e AR
(5 Em) ()
)
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Example 7 %) Self Tutor
If p=3i—5j and q=—i—2j, find |p—2q].
p —2q = 3i—5j — 2(—i —2j)
=3i—5j+2i+4j
=5i—j
S p—2q| = /5% + (1)
= /26 units
EXERCISE 11C
_ (3 _ (1 _ (2 . VECTOR RACE
1 If a= ( 9 ), = <4>, and ¢ = <_5) find: GAME
a a+b b b+ a c b+ec d c+b s
e a+tc f c+a g ata h b+a+c L5
. —4 -1 3
2 Given p = < 9 >, = (_5>, and r = <_2> find:
ap-—-q b q-r c p+q-—-r
d p—q-r e q—-r—p fr+q—p
3 Consider a = (al).
a2
a Use vector addition to show that a + 0 = a.
b Use vector subtraction to show that a — a = 0.
1 -2 -3
4 For p= (5>, q= < 4 ), and r = (_1) find:
a —3p b Iq c 2p+q d p-2q
e p—ir f 2p + 3r g 2q — 3r h 2p—q+3r

5 Consider p = < 1 ) and q = < _21 ) Find geometrically and then comment on the results:

aptptq+qt+gq

2 -1
6 For r:(3) and s:<4) find:

a |r] b |s] c |r+s|
7 If p= <§> and q = <_42) find:

a |p b [2p| c |—2p]

f lqf g |4q| h |—4q|

b p+q+p+q+gq

c q+tptq+p-+tq

d |r—s] e |s—2r|

e [-3p]

i |34 i |—3d
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8 Suppose a=2i—j, b=1i+ 3j, and ¢ = —4i. Find:
a a+b b 3b+c c a—c¢
d 2b—a e [c+2a| f |—2b]

9 Suppose a = (al) and b = (bl). Prove that:
a9 b2

a if ka=b, k0, then a:%b b |ka|=|k||a]

10 Prove that [a+b|<|a|+|b]

a using a geometric argument and the diagram

b by letting a = <Z;> and b = (2;)
-]\ [THE VECTOR BETWEEN TWO POINTS

. . .. - al
In the diagram, point A has position vector OA = < ),

Ay az
B (b1,b2) . .. — b
Y T T : e
2% (aras) ; and point B has position vector OB ( by )
L 0 ; — - —
: . AB=A0+ OB
—
=—-0A+0OB
— —
. H o - OB - OA
0" ay b1 z B bl B aq
o b2 ag

In general, for two points A and B with position vectors
a and b respectively, we observe

— —
AB=-a+b and BA=-b+a
=b-—a =a-b>b

[ bi—a (a1 —b
o bz—ag o a2—b2
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Example 8 %) Self Tutor

Given points A(—1, 2), B(3,4), and C(4, —5), find the position vector of:
a B from O b B from A ¢ A from C

.. . .= 3-0 3
a The position vector of B relative to O is OB = i—0)=\4)

()

" . e -1-4 -5
¢ The position vector of A relativeto Cis C = .

%l
I

b The position vector of B relative to A is

2—--5 7

Example 9 %) Self Tutor

[AB] is the diameter of a circle with centre
C(-1,2). IfBis (3,1), find: A

—

a B b the coordinates of A.

s (-1-3 4
b If A has coordinates (a, b), then CA = a- (1)) _ (ae+]
b—2 b—2
=~ _ 5A a+1\ (-4
But CA =BC, SO(b—Z)( 1 )
~a+l=—-4 and b—-2=1

. a=-5 and b=3
Ais (=5, 3).

EXERCISE 11D

1 Find AB given:
a A(2,3) and B(4, 7) b A(3, —1) and B(1, 4) ¢ A(—2,7) and B(1,4)
d B(3,0) and A(2,5) e B(6, —1) and A(0, 4) f B(0,0) and A(-1, —3)

2 Consider the point A(1, 4). Find the coordinates of:

. - 3 . — -1
a B given AB:<_2> b C given CA:<2).
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3 [PQ] is the diameter of a circle with centre C.

—
a Find PC.

Q
b Hence find the coordinates of Q.
P(-1,1)
4 A(1,4) B(6,5) ABCD is a parallelogram.
a Find AB.
—>
b Find CD.

¢ Hence find the coordinates of D.

D C(4,-1)

5 A(—1,3) and B(3, k) are two points which are 5 units apart.
— —
a Find AB and | AB|.
b Hence, find the two possible values of k.

¢ Show, by illustration, why k should have two possible values.

. - —
6 B(3,5) a Find AB and iC. o
b Explain why BC = —AB + AC.
—
¢ Hence find BC.
A(L,2) d Check your answer to ¢ by direct evaluation.

2
3 1
1

— 2 —

> and CA = <_1>, find CB.
5A 2 — -3 —
>, RQ = (1), and RS = < 5 >, find SP.

A(3, 6) a Find the coordinates of M.
’ —_— — —
b Find vectors CA, CM, and CB.
. — — —
¢ Verify that CM = $CA + CB.

. — — -3 —
7 a Given BA and BC = ( ), find AC.
B

. - -
b Given A
— -1

¢ Given PQ = 4

<
<
<

B(-1, 2)
C(—4, 1)
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/ / /%a are parallel vectors of different length.

Two non-zero vectors are parallel if and only if one is a scalar multiple of the other.

Given any non-zero vector a and non-zero scalar k, the vector ka is parallel to a.

e If a is parallel to b, then there exists | k| is the modulus of k,

a a scalar k such that a = kb. whereas | a | is the length
f vector a.
/ e If a = kb for some scalar k, then orveerora

> ais parallel to b, and
> la|=|k[|b].

Example 10 %) Self Tutor

Find r given that a = (_7,1) is parallel to b = <_23 )

Since a and b are parallel, a = kb for some scalar k.

-1 2
() =+(%)
. —1=2k and r = -3k

k= —1 and hence r = —3(—

)=

(SIS
ol

UNIT VECTORS
Given a non-zero vector a, its magnitude |a | is a scalar quantity.

If we multiply a by the scalar |—1|,
a

we obtain the parallel vector |—1| a with length 1.
a

. . . . 1
e A unit vector in the direction of a is — a.

|a

e A vector of length k in the same direction as a is — a.

|a

L k
e A vector of length £ which is parallel to a could be +— a.

|a



Vectors (Chapter 11)

293

Example 11

o) Self Tutor

If a=23i—j, find:

a a unit vector in the direction of a
b a vector of length 4 units in the direction of a
¢ vectors of length 4 units which are parallel to a.

a |a|]=+/32+(-1) .. the unit vector is J%TJGﬁ_j)
T T _ 3 i 1
* ~ V' Vi
= V10 units
b This vector is \/il—o(?)i—j)
=12 §_ 4
vio '~ Vo)
¢ The vectors are %i—\/%j and _%i+\/%j'

EXERCISE 11E

1

2

3

Find r given that a = <21> and b = (:’6> are parallel.

Find a given that < —31 ) and <C2l> are parallel.

What can be deduced from the following?
— — — — — —
a AB =3CD b RS = —3KL ¢ AB =2BC

If a= (i), write down the vector:

a in the same direction as a and twice its length
b in the opposite direction to a and half its length.

Find the unit vector in the direction of:
a i+ 2j b i-3j c 2i—j
Find a vector v which has:

a the same direction as < _21 ) and length 3 units

b the opposite direction to ( _i) and length 2 units.

Ais (3,2) and point B is 4 units from A in the direction ( _11 >

— — — — —
a Find AB. b Find OB using OB = OA + AB.

¢ Hence deduce the coordinates of B.
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'PROBLEMS INVOLVING VECTOR OPERATIONS

When we apply vectors to problems in the real world, we
often consider the combined effect when vectors are added
together. This sum is called the resultant vector.

The diagram shows an example of vector addition. Two tug
boats are being used to pull a ship into port. If the tugs tow
with forces F; and F> then the resultant force is F; + Fs.

Example 12 ) Self Tutor

In still water, Jacques can swim at 1.5 ms~—!. Jacques is B

at point A on the edge of a canal, and considers point B

directly opposite. A current is flowing from the left at a ,
constant speed of 0.5 ms™!. current
0.5ms!

a If Jacques dives in straight towards B, and swims
without allowing for the current, what will his actual =
speed and direction be? A

b Jacques wants to swim directly across the canal to point B.
i At what angle should Jacques aim to swim in order that the current will correct his direction?
ii What will Jacques’ actual speed be?

Suppose ¢ is the current’s velocity vector,
s is the velocity vector Jacques would have if the water was still, and
f=c+ s isJacques’ resultant velocity vector.

a Jacques aims directly across the river, but the current takes him downstream to the right.

B )2 = e+ s]? tang = 22
? — 0.5 + 1.52 o
: - : 0 ~ 18.4°
— e =25
current
Sle/t
d
A

L and his direction of motion is

Jacques has an actual speed of approximately 1.58 ms~™
approximately 18.4° to the right of his intended line.

b Jacques needs to aim to the left of B so the current will correct his direction.

im¢=%
¢ ~ 19.5°

Jacques needs to aim approximately 19.5° to the left of B.
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i+ e =]s]’
B
oo f)P +0.5% = 1.52 E
|f‘2 =2 —_— c |
o~ 141 o ent, *
In these conditions, Jacques’ actual speed \?| f
towards B is approximately 1.41 ms™!. A"
Another example of vector addition is when an aircraft is
affected by wind. A pilot needs to know how to compensate SIMULATION
for the wind, especially during take-off and landing. S

EXERCISE 11F

1 A bird can normally fly with constant speed 6 ms~!. Using a vector diagram to illustrate each situation,

find the bird’s speed if:

a it is assisted by a wind of 1 ms~! from directly behind it

b it flies into a head wind of 1 ms~!.
2 In still water, Mary can swim at 1.2 ms~!. She is standing at
point P on the edge of a canal, directly opposite point Q. The

water is flowing to the right at a constant speed of 0.6 ms—!. —

. . . . current
a If Mary tries to swim directly from P to Q without G

allowing for the current, what will her actual velocity
be? =

b Mary wants to swim directly across the canal to point Q. P

B

i At what angle should she aim to swim in order that the current corrects her direction?
i

ii What will Mary’s actual speed be?

3 A boat needs to travel south at a speed of 20 kmh~!. However, a constant current of 6 kmh~1 is

flowing from the south-east. Use vectors to find:

a the equivalent speed in still water for the boat to achieve the actual speed of 20 kmh~!

b the direction in which the boat must head to compensate for the current.

4 As part of an endurance race, Stephanie needs to swim from 20m
X to Y across a wide river. Y+«
Stephanie swims at 1.8 ms™ in still water. T |_|
i —_—
The river flows with a consistent current of 0.3 ms~! as 80 m ; Sué'rentl
3ms
shown. l =
a Find the distance from X to Y. X

b In which direction should Stephanie aim so that the
current will push her onto a path directly towards Y?

¢ Find the time Stephanie will take to cross the river.
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5 An aeroplane needs to fly due east from one city to another at a speed of 400 kmh~!. However, a
50 kmh~! wind blows constantly from the north-east.

a How does the wind affect the speed of the aeroplane?
b In what direction must the aeroplane head to compensate for the wind?

We have seen in Cartesian geometry that we can determine the equation of a line using its direction and
any fixed point on the line. We can do the same using vectors.

Suppose a line passes through a fixed point A with position DEMO
vector a, and that the line is parallel to the vector b.

. . . -
Consider a point R on the line so that OR =r. A (fixed point)

. e —  —
By vector addition, OR = OA + AR

N
r=a+ AR
. s R (any point)
Since AR is parallel to b,
AR =tb for some scalar ¢ € R O (origin) line

r=a-+tb

Suppose a line passes through a fixed point A(aq, as) with position vector a, and that the line is parallel

to the vector b = <Zl ) If R(z, y) with position vector r is any point on the line, then:
2

e r=a+th teR or (x):(a1)+t(b1>
Yy ag bo

is the vector equation of the line.

. . b
e The gradient of the line is m = b—2
1
e Since (;) = (Z; __:: Z;i ) , the parametric equations of
the line are = = a; + b1t and y = as + bot, where t € R The equations of

lines do not need
to be written in
parametric form

is the parameter.
Each point on the line corresponds to exactly one value of ¢.

e We can convert these equations into for the syllabus.
Cartesian form by equating ¢ values. It is possible to convert
T —ay y—as between vectors and
Using ¢t = = we obtain Cartesian equations.

by by . .
. . However, in 3 and higher
bex — b1y = baar — braz  which is the dimensions, vectors are

Cartesian equation of the line. much simpler to use.
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Example 13 ) Self Tutor

A line passes through the point A(1, 5) and has direction vector <g> Describe the line using:

a a vector equation b parametric equations ¢ a Cartesian equation.

a The vector equationis r = a + tb where

oot () o= (3)
NOMOES

b xr=1+3t and y=5+2t, teR
r—1 y—>5

¢ Now t= =
3 2
20 —2 =3y — 15
2z — 3y = —13

NON-UNIQUENESS OF THE VECTOR EQUATION OF A LINE

Consider the line passing through (5, 4) and (7, 3). When
writing the equation of the line, we could use either point to give
the position vector a.

Similarly, we could use the direction vector ( _21 ) , but we could

-9 . .
also use < 1 ) or indeed any non-zero scalar multiple of these
vectors.

We could thus write the equation of the line as

5 2 7 -2
x_<4>—|—t<1), teR or x_<3>—|—s(1>, s € R and so on.

Notice how we use different parameters ¢ and s when we write these equations. This is because the parameters
are clearly not the same: when ¢ =0, we have the point (5, 4)
when s =0, we have the point (7, 3).

In fact, the parameters are related by s =1 —t¢.

EXERCISE 11G

1 Describe each of the following lines using:

i a vector equation ii parametric equations ifi a Cartesian equation
. o 1 .
a a line with direction < 4> which passes through (3, —4)

b a line parallel to 3i + 7j which cuts the z-axis at —6
¢ a line passing through (—1, 11) and (-3, 12).



298 Vectors

(Chapter 11)

2 A line passes through (-1, 4) with direction vector < 31 )

a Write parametric equations for the line using the parameter ¢.
b Find the points on the line for which ¢ =0, 1, 3, —1, and —4.

3 a Does (3, —2) lie on the line with vector equation r = <%) +t <_13 ) ?

b (k,4) lies on the line with parametric equations =z =1—2¢, y =1+¢. Find k.

4 Line L has vector equation r = <;> +1 < _31 >

a Locate the point on the line corresponding to ¢ = 1.
b Explain why the direction of the line could also be described by ( _13 >

¢ Use your answers to @ and b to write an alternative vector equation for line L.

(1| [CONSTANT VELOCITY PROBLEMS

A yacht club is situated at (0, 0). At 12:00 noon a yacht Ly
is at point A(2, 20). The yacht is moving with constant 20t A12:00 1noar

speed in the straight path shown in the diagram. The grid \‘ 1:00 pm
intervals are kilometres.

At 1:00 pm the yacht is at (6, 17). ~"‘~.~2~~:00
At 2:00 pm it is at (10, 14).

In this case: 107 (4\>«

o the initial position of the yacht is given by the position

5 r
vector a =
( 20 ) sea

e the direction of the yacht is given by the vector \

pm

R(z.y)

X

_ (4 -0 5 10
b—<_3>.

Suppose that ¢ hours after leaving A, the yacht is at Tand
R(z, y). '

— —

OR = + AR

4

+t _3

for t >0

-3

||
/\/\ Ol

0) +1 ( 4 ) is the vector equation of the yacht’s path.

T~
< 8
~_
Il

15

]Y
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If an object has initial position vector a and
moves with constant velocity b, its position at
time ¢ is given by

r=a-+tb for t>0.
The speed of the objectis |b]|.

Example 14 ) Self Tutor

(;j) = <é> -+t ( _3 4) is the vector equation of the path of an object.

The time ¢ is in seconds, ¢ > 0. The distance units are metres.
a Find the object’s initial position.
b Plot the path of the object for ¢ =0, 1, 2, 3.
¢ Find the velocity vector of the object. d Find the object’s speed.
e

If the object continues in the same direction but increases its speed to 30 ms~*
state its new velocity vector.

>

a At t=0, (m)=<;> b k=0
Y o1.9)
*. the object is at (1, 9).
\i=1
5 W45
DEMO ‘ t=2
A ,\..(‘7’ 1)
@’N'R o 5 g
. £=3
+(10.-3)
\ i

¢ The velocity vector is < 5) 4 )

d The speed is '(i)‘:\/m

=5ms~ L.

Velocity is a vector.
Speed is a scalar.

7_/

e Previously, the speed was 5 ms™! and the velocity vector was

. . 3 18
the new velocity vector is 6 < _4> = < o4 )

—4
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Example 15 ) Self Tutor

An object is initially at (5, 10) and moves with velocity vector 3i — j metres per minute. Find:
a the position of the object at time ¢ minutes
b the speed of the object
¢ the position of the object at ¢ = 3 minutes
d the time when the object is due east of (0, 0).

a r=a-+tb

()-() (2 ven
/ = (5)- ()

After ¢ minutes, the object is at (5 + 3t, 10 — ¢).

b The speed of the objectis |b|= \/m = /10 metres per minute.
¢ At t=3 minutes, 5+ 3t =14 and 10 —¢ =7. The object is at (14, 7).
d When the object is due east of (0, 0), y must be zero.
10-t=0
t =10
The object is due east of (0, 0) after 10 minutes.

EXERCISE 11H

1 A particle at P(x(t), y(t)) moves such that z(¢) =1+ 2t and y(t) =2—5¢, t>0.
The distances are in centimetres and ¢ is in seconds.

a Find the initial position of P.

b Illustrate the initial part of the motion of P where ¢t =0, 1, 2, 3.
¢ Find the velocity vector of P.

d Find the speed of P.

2 a Find the vector equation of a boat initially at (2, 3), which travels with velocity vector < :15 > .
The grid units are kilometres and the time is in hours.
Locate the boat’s position after 90 minutes.
¢ How long will it take for the boat to reach the point (5, —0.75)?
3 A remote controlled toy car is initially at (—3, —2). It

moves with constant velocity 2i + 4j. The distance units
are centimetres, and the time is in seconds.

a Write an expression for the position vector of the car at
any time ¢ > 0.

b Find the position vector of the car at time ¢ = 2.5.
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¢ Find when the caris i due north ii due west of the observation point (0, 0).

d Plot the car’s positions at times ¢ =0, %, 1, 1%, 2, 2%,

4 Each of the following vector equations represents the path of a moving object. ¢ is measured in seconds,
and t > 0. Distances are measured in metres. In each case, find:

i the initial position ii the velocity vector iii the speed of the object.

() e

5 Find the velocity vector of a speed boat moving parallel to:

a (_43> with a speed of 150 kmh~1! b 2i +j witha speed of 50 kmh~1.

6 Find the velocity vector of a swooping eagle moving in the direction 5i — 12j with a speed of
91 kmh~!,

7 Yacht A moves according to z(t) =4 ++¢, y(t) =5 — 2t where the distance units are kilometres and
the time units are hours. Yacht B moves according to z(¢) =1+ 2¢, y(¢t) = —-8+1¢, t > 0.

a Find the initial position of each yacht.

Find the velocity vector of each yacht.

Show that the speed of each yacht is constant, and state these speeds.

Find the Cartesian equation of the path of each yacht.

Hence show that the paths of the yachts intersect at right angles.

Will the yachts collide?

- 0 2 0 T

8 Submarine P is at (—5, 4). It fires a torpedo with velocity vector ( _31 ) at 1:34 pm.

Submarine Q is at (15, 7). a minutes after 1:34 pm, it fires a torpedo with velocity vector < :;,1 )

Distances are measured in kilometres, and time is in minutes.

a Show that the position of P’s torpedo can be written
as P(x1(t), y1(t)) where x1(t) = —5 + 3t and
yi(t) =4—1t.

b What is the speed of P’s torpedo?

¢ Show that the position of Q’s torpedo can be written as
Q(z2(t), y2(t)) where z2(t) = 15 — 4(t — a) and
y2(t) =7—3(t — a).

d Q’s torpedo is successful in knocking out P’s torpedo.
At what time did Q fire its torpedo, and at what time did
the explosion occur?
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Review set 11A

1 a Write the given vectors in component form and
in unit vector form.

b Find, in unit vector form: / y‘
i ii

X+Yy y — 2x

2 Consider the vector 3i — j.
a Write the vector in component form.
b Illustrate the vector using a directed line segment.
¢ Write the negative of the vector.
d Find the length of the vector.

k
3 a Find k given that ( 1 ) is a unit vector.

V2
b Find the vector which is 5 units long and has the opposite direction to ( _21 )

6 2 -1
4 For m = <3>, n = <3>, and p = ( 3 ), find:

a m-—n-+p b 2n — 3p c m+p]|

5 Given points A(3, 1), B(5, —2), and C(8, 4), find:
— — —
a AB b CB ¢ |AC|

6 B(—3,—1) and C(k, 2) are 5 units apart.
— —
a Find BC and |BC|.
b Hence, find the two possible values of k.
¢ Show, by illustration, why % should have two possible values.

7 A small plane can fly at 350 kmh~! in still conditions. Its pilot needs to fly due north, but needs
to deal with a 70 kmh~! wind from the east.

a In what direction should the pilot face the plane in order that its resultant velocity is due
north?

b What will the speed of the plane be?

-3

a vector equation b parametric equations ¢ Cartesian equation.

8 For the line that passes through (—6, 3) with direction ( 4 >, write down the corresponding:

9 (-3, m) lies on the line with vector equation (;) = ( 182) +t ( _47 ) Find m.

10 Find the velocity vector of an object moving in the direction 3i — j with speed 20 kmh~—!.
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11 Line L has equation r = (_33) +t<§>.

a Locate the point on the line corresponding to ¢ = 1.

b Explain why the direction of the line could also be described by ( 140 )
¢ Use your answers to @ and b to write an alternative vector equation for line L.

12 A moving particle has coordinates P(xz(t), y(¢t)) where x(¢t) = —4 + 8t and y(t) = 3 + 6t.
The distance units are metres, and ¢ > 0 is the time in seconds. Find the:

a initial position of the particle b position of the particle after 4 seconds

¢ particle’s velocity vector d speed of the particle.

Review set 11B

1 a Find in component form and in unit vector form:
- - - = -mw s
A B’ i AB ii BC ili CA
b Which two vectors in a have the same length?
Explain your answer.

—
¢ Write the negative vector of CA in three different
C ways.

4 -3
If r(l) and s<2> find:

a |s| b |r+s]| c |2s—r|

N

3 Find k if the following are unit vectors:

5
13 k
: < K ) ° (—k
= —4 == —1 =% 2 —
If PQ = ( 1 ) RQ = ( 5 ) and RS = (_3), find SP.
5 [MN] is the diameter of a circle with centre C.

a Find the coordinates of M.
b Find the radius of the circle.

=

M

6 Find m if 3 and —12 are parallel vectors.
m —20
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7 When an archer fires an arrow, he is suddenly aware of a breeze which pushes his shot off-target.
The speed of the shot | v | is not affected by the wind, but the arrow’s flight is 2° off-line.

a Draw a vector diagram to represent the situation.
b Hence explain why:

i the breeze must be 91° to the intended direction of the arrow
ii the speed of the breeze must be 2|v|sin1°.

8 Find the vector equation of the line which cuts the y-axis at (0, 8) and has direction 5i + 4j.
9 A yacht is sailing with constant speed 5v/10 kmh~1! in the direction —i — 3j. Initially it is at
point (—6, 10). A beacon is at (0, 0) at the centre of a tiny atoll. Distances are in kilometres.
a Find, in terms of i and j:
i the initial position vector of the yacht

ii the velocity vector of the yacht
iii the position vector of the yacht at any time ¢ hours, ¢ > 0.

b Find the time when the yacht is due west of the beacon. How far away from the beacon is the
yacht at this time?

10 Write down 1§ a vector equation i parametric equations for the line passing through:

a (2, —3) with direction <_41) b (—1,6) and (5, —2).

11 Submarine X23 is at (2, 4). It fires a torpedo with velocity vector ( _13> at exactly 2:17 pm.

Submarine Y18 is at (11, 3). It fires a torpedo with velocity vector (_al) at 2:19 pm to

intercept the torpedo from X23. Distance units are kilometres. ¢ is in minutes.
a Find z1(¢) and y1(¢) for the torpedo fired from submarine X23.
b Find z2(¢t) and ya(¢) for the torpedo fired from submarine Y18.
¢ At what time does the interception occur?
d What was the direction and speed of the interception torpedo?
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Opening problem

Aakriti owns a stationery shop. She sells two brands of pen,
in three colours. Her sales for one week are shown in the table
below.

Brand
Colour | Pentex | Rollerball
Blue 32 24
Black 25 16
Red 13 9

Pentex pens sell for $1.19 each, and Rollerball pens sell for
$1.55 each.

Things to think about:
a How can we convert the table into a 3 x 2 quantities matrix Q?
b How can we display the prices in a price matrix P?
¢ How can we multiply the matrices Q and P? What does the matrix QP represent?
d Can you find the total revenue for Aakriti in pen sales for the week?

Matrices are rectangular arrays of numbers which are used to organise numerical information. They are used
in a wide range of fields, including:

e solving systems of equations in business, physics, and engineering

e linear programming where we may wish to optimise a linear expression subject to linear constraints

e Dbusiness inventories involving stock control, cost, revenue, and profit calculations

e Markov chains for predicting long term probabilities such as in weather

e strategies in games where we wish to maximise our chance of winning

e cconomic modelling where the input from suppliers is needed to help a business be successful

e graph (network) theory used to determine routes for trucks and airlines to minimise distance travelled
and therefore costs

e assignment problems to direct resources in the most cost-effective way

e forestry and fisheries management where we need to
select an appropriate sustainable harvesting policy

e cubic spline interpolation used to construct curves and
fonts

e computer graphics
o flight simulation

o Computer Aided Tomography (CAT scanning) and
Magnetic Resonance Imaging (MRI)

e fractals and chaos
e genetics

e cryptography including coding, code breaking, and
computer confidentiality.

The Julia set
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'MATRIX STRUCTURE

A matrix is a rectangular array of numbers arranged in rows and columns.

Each number within a matrix has a particular meaning.

You have been using matrices for many years without realising it. For example, a football premiership table
and a recipe can each be written as matrices.

Won | Lost | Drew | Points Ingredients | Amount

Manchester United | 28 5 5 89 sugar 1 tspn
Manchester City 23 9 6 78 flour 1 cup
Chelsea 22 9 7 75 milk 200 mL
Arsenal 21 10 7 73 salt 1 pinch

Consider these two items of information:

Shopping list Furniture inventory [Each number in a matrix
Bread | 2 loaves chairs | tables | beds i e e i
Juice | 1 carton Flat 6 1 2 \

Eggs 6 Unit 9 2 3
Cheese 1 House 10 3 4

We can write these tables as matrices by extracting the numbers and placing
them in round brackets:

number T B 9
B /2 | 6 1 2
J(1) and F L6 1 2V o simply g | and [0 2 3
E|6 uf9o 23 10 3 4
c \1 H\10 3 4 1

Notice how the organisation of the data is maintained in matrix form.

2
1 has 4 rows and 1 column, and we say that this
6 is a 4 x 1 column matrix or column vector.
1
column 2 -}
6 1 2 .
9 92 3 has 3 rows and 3 columns, and is called a
row 3 -\10 @ 4 3 X 3 square matrix.
'
this element is in row 3, column 2
(3 0 —1 2) has 1 row and 4 columns, and is called a

1 X 4 row matrix or row vector.

An m X n matrix has m rows and n columns.

m X n specifies the order of a matrix.
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Example 1 ) Self Tutor

Lisa goes shopping at store A to buy 2 loaves of bread at $2.65 each, 3 litres of milk at $1.55 per
litre, and one 500 g tub of butter at $2.35.
a Represent the quantities purchased in a row matrix Q, and the costs in a column matrix A.

b When Lisa goes to a different supermarket (store B), she finds that the prices for the same items
are $2.25 for bread, $1.50 for milk, and $2.20 for butter.
Write the costs for both stores in a single costs matrix C.

a The quantities matrix is Q = (% % } ) 3 .
N :
bread milk butter
2.65 \ «— bread
The costs matrixis A = | 1.55 | <— milk

2.35 | <— butter

b We write the costs for each store in separate columns.

2.65 2.25\ <«— bread
The new costs matrix is C = | 1.55 1.50 | «— milk
2.35 2.20 / «— butter

P

store A store B

EXERCISE 12A
1 Write down the order of:

12 3
a (510 2) b(i) c<§_31> d (2 0 4
5 10

2 A grocery list consists of 2 loaves of bread, 1 kg of butter, 6 eggs, and 1 carton of cream. Each loaf of
bread costs $1.95, each kilogram of butter costs $2.35, each egg costs $0.45, and each carton of cream
costs $2.95.

a Construct a row matrix showing quantities.
b Construct a column matrix showing prices.
¢ What is the significance of (2 x 1.95) + (1 x 2.35) + (6 x 0.45) + (1 x 2.95)?

3 A food processing factory produces cans of beans in three
sizes: 200 g, 300 g, and 500 g. In February they produced
respectively:

e 1000, 1500, and 1250 cans of each in week 1
e 1500, 1000, and 1000 cans of each in week 2
e 800, 2300, and 1300 cans of each in week 3
e 1200 cans of each in week 4.

Construct a matrix to show February’s production levels.
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4 Over a long weekend holiday, a baker produced the following food
items: On Friday he baked 40 dozen pies, 50 dozen pasties, 55 dozen
rolls, and 40 dozen buns. On Saturday he baked 25 dozen pies,
65 dozen pasties, 30 dozen buns, and 44 dozen rolls. On Sunday he
baked 40 dozen pasties, 40 dozen rolls, and 35 dozen of each of pies
and buns. On Monday he baked 40 dozen pasties, 50 dozen buns,
and 35 dozen of each of pies and rolls. Represent this information
as a matrix.

77| IMATRIX OPERATIONS AND DEFINITIONS

MATRIX NOTATION

Consider a matrix A which has order m x n.

(" . )
By convention, the

We can write a;; are labelled

down then across.

A = (ai;) where i=1,2,3,..,m
17=123, ..,n
and a;; is the element in the ith row, jth column.

For example, as3 is the number in row 2 and column 3 of matrix A.

EQUALITY

Two matrices are equal if they have the same order and the elements in
corresponding positions are equal.

A=B & Q5 = bij for all 7, j

For example, if (a b>— <’w :1:) then a=w, b=z, c=y, and d=z.
c d Yy oz

MATRIX ADDITION

Store
A B C

23 41 68\ dresses
28 39 79 | skirts
46 17 62 / blouses

Thao has three stores: A, B, and C. Her stock levels for
dresses, skirts, and blouses are given by the matrix:

Some newly ordered stock has just arrived. 20 dresses, 20 20 20
30 skirts, and 50 blouses must be added to the stock levels 30 30 30
of each store. Her stock order is given by the matrix: 50 50 50
23 41 68 20 20 20 43 61 88
Clearly the new levels are: 28 39 79 ) +130 30 30 | =158 69 109
46 17 62 50 50 50 96 67 112

To add two matrices, they must be of the same order, and we add
corresponding elements.



310 Matrices (Chapter 12)

MATRIX SUBTRACTION
29 51 19 15 12 6
Suppose Thao’s stock levels were | 31 28 32 | and her sales matrix for the week was | 20 16 19
40 17 29 19 8 14

Thao will be left with her original stock levels less what she has sold. Clearly, we need to subtract
corresponding elements:

29 51 19 15 12 6 14 39 13
31 28 32 ) —-120 16 19 | = 11 12 13
40 17 29 19 8 14 21 9 15

To subtract matrices, they must be of the same order, and we subtract
corresponding elements.

Summary: o A=+ B = (a)=x (b;) = (a;; £ b;j)
e We can only add or subtract matrices of the same order.
e We add or subtract corresponding elements.
e The result of addition or subtraction is another matrix of the same order.

Example 2 ) Self Tutor
1 2 3 2 1 6 3 1
If A—<6 5 4>, B—<0 3 5), and C—<2 4), find:
a A+B b A+C
a A+B= 123 + 2 16 b A + C cannot be found as the
6 5 4 0 3 5 .
matrices do not have the same

_(1+2 241 346 order.
“\64+0 54+3 4+5

(339
“\l6 8 9

Example 3 ) Self Tutor
3 4 8 2 0 6 3 4 8 2 0 6
fA=(12 1 0)and B={|3 0 4|, A-B=|2 1 0)]-13 0 4
1 4 7 5 2 3 1 4 7 5 2 3
find A — B. 3—2 4-0 8—-6
=12-3 1-0 0—-4
1-5 4-2 7-3
1 4 2
=!1-1 1 —4
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EXERCISE 12B.1

3 4 6 -3 -3 7 )
1 If A<5 2), B<_2 1), and C(_4 _2>, find:

a A+B b A+B+C c B+C d C+B-A
3 5 —11 17 -4 3
2 If P=| 10 2 6 and Q=| -2 8 =8, find:
-2 -1 7 3 —4 11
a P+Q b P-Q c Q-P

3 A restaurant served 85 men, 92 women, and 52 children
on Friday night. On Saturday night they served 102 men,
137 women, and 49 children.

a Express this information in fwo column matrices.

b Use the matrices to find the totals of men, women, and
children served over the two nights.

4 David bought shares in ﬁye companies on Monday, and h.e sold Cost price | Selling price
them on Friday. The details are shown in the table alongside. per share per share
a W-rlte down.DaV1d s column maglx forf . A $1.72 $1.79
i cost price ii selling price. B $27.85 $28.75
b What matrix operation is needed to find David’s profit or : :
loss on each type of share? C $0.92 $1.33
¢ Find David’s profit or loss matrix. D $2.53 §2.25
E $3.56 $3.51

5 In November, Lou E Gee sold 23 fridges, 17 stoves, and 31 microwave ovens. His partner
Rose A Lee sold 19 fridges, 29 stoves, and 24 microwave ovens.
In December, Lou sold 18 fridges, 7 stoves, and 36 microwaves, and Rose sold 25 fridges, 13 stoves,
and 19 microwaves.

a Write their sales for November as a 3 x 2 matrix.
b Write their sales for December as a 3 x 2 matrix.
¢ Write their total sales for November and December as a 3 x 2 matrix.

6 Find x and y if:
z 22\ [y 4 T y\ _ [(-y =
a (3 —1>_(3 y—|—1) b (y x) \xz -y

7 alf A:<§ _11> and B:<_21 §> fid A+ B and B+ A.

b Explainwhy A+ B =B+ A forall 2 x2 matrices A and B.
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-1 0 3 4 4 -1
8 a For A—<1 5), B—<1 2), and C—<1 3>, find (A+ B) +C

and A+ (B+ C).
b Prove that, if A, B, and C are any 2 x 2 matrices, then (A + B) + C=A + (B + C).

Hint: Let A—(“ b), B—(p q), and c—(“’ x)
c d r s y oz

MULTIPLES OF MATRICES

In the pantry there are 6 cans of peaches, 4 cans of apricots, and 8 cans of pears. We represent this by the

6
column vector C = | 4
8
12
If we doubled the cans in the pantry, we would have 8 whichis C + C or 2C.
16

Notice that to get 2C from C we simply multiply all the matrix elements by 2.

3x6 18
Likewise, trebling the fruit cans in the pantry gives 3C = | 3 x4 | = | 12
3x8 24
%6 3
and halving them gives 2C = | 2 x4 | = | 2 We use capital letters for
L 4 matrices and lower-case
5 X8 letters for scalars.
If A= (a;;) hasorder m xn, and k is a scalar, then kA = (ka;;). \
So, to find kA, we multiply each element in A by k.
The result is another matrix of order m x n.
Example 4 ) Self Tutor
. 1 2 5
If A is (2 0 1>, find:
a 3A b 1A
- 1 2 5 14_1(1 25
a3A_3(2 0 1) b 2A_2<2 0 1
(3><1 3 x 2 3><5> <§x1 1x2 §x5)
S \3x2 3x0 3x1 =
ix2 ix0 ix1
(3 6 15 1 1
- <6 0 3 > [zt %
10 3
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EXERCISE 12B.2

1 1If B:<6 12), find:

24 6
1 1 1
a 2B b 3B ¢ B d —3B
2 3 5 1 2 1 )
2 If A—<1 6 4) and B—(1 9 3>, find:
a A+B b A—-B c 2A+B d 3A—-B
3 A builder builds a block of 12 identical flats. Each flat is to contain 1 table, 4 chairs, 2 beds, and
1 wardrobe.
1
Let F= ;l be the matrix representing the furniture in one flat.
1

In terms of F, what is the matrix representing the furniture in all flats? Evaluate this matrix.

4 On weekdays, a video store finds that its average daily hirings are 75 DVD movies, 27 Blu-ray movies,
and 102 games. On weekends, the average daily hirings are 43 Blu-ray movies, 136 DVD movies, and

129 games.
a Represent the data using two column matrices A and B. «—— DVD movies
b Find 5A + 2B. «— Blu-ray movies
¢ What does the matrix in b represent? ~— games

5 [Isabelle sells clothing made by four different companies which
we will call A, B, C, and D.
Her usual monthly order is:

A B C D

skirt 30 40 40 60

dress 50 40 30 75

evening | 40 40 50 50

suit 10 20 20 15

Find her order, to the nearest whole number, if:

a she increases her total order by 15%
b she decreases her total order by 15%.

ZERO OR NULL MATRIX

A zero matrix is a matrix in which all the elements are zero.

For example, the 2 x 2 zero matrix is <8 8), and the 2 x 3 zero matrix is <8 8 8)

If A is a matrix of any order and O is the corresponding zero matrix, then
A+0=0+A=A

. e (2 3), (0 0)_(2 3 g (00, (2 3\ _(2 3
orexampie: | 4 _q 00) \4 1) 0 0 4 —1) = \a 1)
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NEGATIVE MATRICES

The negative matrix A, denoted —A, is actually —1A.

—A is obtained from A by reversing the sign of each element of A.

. 3 -1 —1x3 —-1x-1 -3 1
For example, if A(2 4>, then A<—1><2 —1><4><—2 _4>

The addition of a matrix and its negative always produces a zero matrix.

A+ (—A) =(—A) +A=0

For example: <3 _41> + (:g _14> = (8 8)
MATRIX ALGEBRA

We now compare our discoveries about matrices so far with ordinary algebra. We assume that A and B are
matrices of the same order.

Ordinary algebra Matrix algebra :
We always write
e If a and b are real numbers then e If A and B are matrices then L A
a+ b is also a real number. A + B is a matrix of the A and not 2
same order.
e at+b=b+a e A+B=B+A
e (at+b)+c=a+(b+c) e A+B)+C=A+(B+C) ErS
e a+0=0+a=a e A+O0O=0+A=A v
e at+(—a)=(-a)+a=0 e A+(-A)=(-A)+A=0 5
(]
o ahalfofais 2 o ahalfof Ais 1A
Example 5 ) Self Tutor
Show that:
a if X+A=B then X=B-A b if 3X=A then X:%A
a X+A=B b 3X=A
X+A+(—A) =B+ (—A) ooL(3X) = 1A
. X=B-A |
EXERCISE 12B.3
1 Simplify:
a A+ 2A b 3B - 3B ¢c C-2C
d -B+B e 2(A+B) f —(A+B)

g€ —(2A-0) h 3A — (B—A) i A+2B— (A—B)
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2 Find X in terms of A, B, and C if:

a X+B=A b B+X=C ¢ 4B+ X =2C
d 2X=A e 3X=B f A—X=B
g IxX=c h 2(X+A) =B i A—4X=C

1 2
3 6

b Suppose N = (; _51> and 4X = N. Find X.

3 a Suppose M = ( ) and 1X =M. Find X.

-1 2 -1 1

'MATRIX MULTIPLICATION

Suppose you go to a shop and purchase 3 cans of soft drink, 4 chocolate bars, and 2 ice creams.

¢ Suppose A = ( ! 0), B = ( ! 4), and A — 2X = 3B. Find X.

. soft drink cans chocolate bars ice creams
The prices are:
$1.30 $0.90 $1.20
1.30
We can represent this by the quantities matrix A = (3 4 2) and the costs matrix B = [ 0.90
1.20

We can find the total cost of the items by multiplying the number of each item by its respective cost, and
then adding the results:
3 x $1.304+4 x $0.90+2 x $1.20 = $9.90

We can also determine the total cost by the matrix multiplication:

1.30
AB=(3 4 2)| 090
1.20

= (3x1.30) + (4% 0.90) + (2 x 1.20)

=9.90

Notice that we write the row matrix first and the column matrix second.

p
In general, (a b c) q | =ap+bg+er.
7
EXERCISE 12C.1
1 Determine: 1
5
a (3 —1)(2) b (1 3 2)(1 c (6 -1 2 3) _01
7
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2 a Show that the sum of w, x, y, and z is given by (w Ty z)

—_ = = =

b Represent the average of w, x, y, and z in a similar way.

3 Lucy buys 4 shirts, 3 skirts, and 2 blouses costing $27, $35, and $39 each respectively.
a Write down a quantities matrix Q and a price matrix P.
b Show how to use P and Q to determine the total cost of Lucy’s clothes.

4 In the interschool public speaking competition, a first place is
awarded 10 points, second place 6 points, third place 3 points,
and fourth place 1 point. One school won 3 first places,
2 seconds, 4 thirds, and 2 fourths.

a Write down this information in terms of a points matrix P
and a numbers matrix N.

b Show how to use P and N to find the total number of
points awarded to the school.

MORE COMPLICATED MULTIPLICATIONS

Consider again Example 1 on page 308 where Lisa needed 2 loaves of bread, 3 litres of milk, and 1 tub of
butter.

We represented this by the quantities matrix Q = (2 3 1).

2.65 2.25
The prices for each store were summarised in the costs matrix C = | 1.55 1.50
2.35 2.20

To find the total cost of the items in each store, Lisa needs to multiply the number of items by their respective
cost.

In Store A, a loaf of bread is $2.65, a litre of milk is $1.55, and a tub of butter is $2.35, so the total cost is
2 x $2.65 + 3 x $1.55 + 1 x $2.35 = $12.30.

In Store B, a loaf of bread is $2.25, a litre of milk is $1.50, and a tub of butter is $2.20, so the total cost is
2 x $2.25 + 3 x $1.50 + 1 x $2.20 = $11.20.

To do this using matrices notice that:
row Q X column 1

row Q X column 2

2.65 2.25 ' |
QC=(2 3 1) x 1.55 1.50 = (1230 11.20)
2.35 2.20
1 X 3 «<— the same — 3 X 2 1x2
A 'y

I— resultant matrix J

Now suppose Lisa’s friend Olu needs 1 loaf of bread, 2 litres of milk, and 2 tubs of butter.

The quantities matrix for both Lisa and Olu would be <2 301 > ~— Lisa

1 2 2)«— Olu
A 'y A

— N~
bread milk butter
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Lisa’s fotal cost at Store A is $12.30, and at store B is $11.20.

Olu’s total cost at Store A'is 1 x $2.65 + 2 x $1.55 + 2 x $2.35 = $10.45,
and at Store Bis 1 x $2.25 +2 x $1.50 + 2 x $2.20 = $9.65.

So, using matrices we require that

row 1 x column 1

l row 1 X column 2
(2 3 1) y %gg fgg - <12.30 11.20)
1 2 2 935 92.90 10.45 Q.ﬁ
row 2 X column 2
row 2 X column 1
2 X 3 «— the same — 3 X 2 2x2
N i

I— resultant matrix J

Having observed the usefulness of multiplying matrices in the contextual examples above, we now define
matrix multiplication more formally.

The product of an m x n matrix A with an n X p matrix B, is the
m X p matrix AB in which the element in the rth row and cth column
is the sum of the products of the elements in the rth row of A with the
corresponding elements in the cth column of B.

n

Z means the
=il

sum from r =1

n
If C = AB then Cij = Z airbr]’ = ai1b1j aF aigsz AF oo AF ainbnj
=l

for each pairi and j with 1<i<m and 1< j<p.

Note that the product AB exists only if the number of columns of A
equals the number of rows of B.

For example:

_fa b _(p q _ (ap+br aqg+bs
If A(c d) and B<r s)’ then AB<0p+dr cq+ds )

x
_fa b ¢ _ [ ar+bytecz
If C_(d . f) and D = Z , then CD_(dm+ey+fz>'
2x3 2x1
3 x1

To get the matrix AB you multiply rows by columns. To get the element in the 5th row and 3rd column of
AB (if it exists), multiply the 5th row of A by the 3rd column of B.
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Example 6 ) Self Tutor
10
1 35
For A= (1 3 5), B= , and C=[2 3|, find: a AC b BC
2 1 3
1 4
a Ais 1x3 andCis 3x2 o ACis 1x2
(S
v
10
AC=(1 3 5)(2 3
1 4

=(1x14+3x24+5x1 1x0+3x3+5x4)

= (12 29)
b Bis 2x ? and C is % X 2 BCis 2x2 To get the element in the 2nd
7 row and 1st column of BC,
10 multiply the 2nd row of B
(1 3 5 by the 1st column of C.
se=(5 1 3)(2 3

[ 1Ix14+3x2+5x1 1x0+3x3+5x4
T\l2x141x2+43x1 2x0+1x3+3x4

(12 29
“\7 15

EXERCISE 12C.2

1 Explain why AB cannot be found for A:(4 2 1) and B:(é ? (1)>

2 Suppose Ais 2xn and Bis m x 3.
a When can we find AB? b If AB can be found, what is its order?
¢ Explain why BA cannot be found.

3 For A:(2 1) and B=(5 6), findd a AB b BA

3 4
1
4 For A=(2 0 3) and B= (4], findk a AB b BA
2
2 3 1 1 0 -1\ (2
5 Findd a (1 2 1)[0 1 0 b (-1 1 0 3
10 2 0 -1 1 4

6 Answer the Opening Problem on page 306.
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At a fair, tickets for the Ferris wheel are $12.50 per adult and
AEUEES '6}2‘—/\@ $9.50 per child. On the first day of the fair, 2375 adults and
it 5156 children ride this wheel. On the second day, 2502 adults
and 3612 children ride the wheel.

a Write the costs as a 2 x 1 matrix C, and the numbers as a
2 x 2 matrix N.

Find NC and interpret the resulting matrix.
¢ Find the total income for the two days.

8 You and your friend each go to your local hardware stores A and B to price items you wish to purchase.
You want to buy 1 hammer, 1 screwdriver, and 2 cans of white paint. Your friend wants 1 hammer,
2 screwdrivers, and 3 cans of white paint. The prices of these goods are:

Hammer | Screwdriver | Can of paint

Store A §7 $3 $19
Store B $6 $2 $22
a Write the requirements matrix R as a 3 x 2 matrix.
b Write the prices matrix P as a 2 x 3 matrix.
¢ Find PR
d Find:
i your costs at store A ii your friend’s costs at store B.

e Do any of the elements of PR tell you and your friend the cheapest way to buy all your items?
Explain your answer.

PROPERTIES OF MATRIX MULTIPLICATION

Discovery 1 Matrix multiplication

In this Discovery we find the properties of 2 x 2 matrix multiplication which are like those of ordinary
number multiplication, and those which are not.

What to do:

1 For ordinary arithmetic 2 X 3 =3 x 2, and in algebra ab = ba.
For matrices, does AB always equal BA?

. (1 0 (-1 1
Hint: Try A—<1 2) and B—<O 3>

2 1t A=(%"?) amndo=(2 %) find AO and OA.
c d 0 0

3 Find AB for:

1 0 0 0 4 =2 1 -3
a A—<O O) and B_<0 1) b A—<_2 1> and B—<2 —6>

4 For all real numbers a, b, and ¢, we have the distributive law a(b+ ¢) = ab+ ac.
a Use any three 2 x 2 matrices A B and C to verify that A(B + C) = AB + AC
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b Now let A—(a b), B—<p q), and C—(w a:)
c d r s Yy oz

Prove that in general, A(B + C) = AB + AC.
¢ Use the matrices you ‘made up’ in a to verify that (AB)C = A(BC).
d Prove that (AB)C = A(BC).

5 a If (i Z)(Zj §>:<Ccl 2), show that w =2 =1 and z =y =0 is a

solution for any values of a, b, ¢, and d.

b For any real number a, we know that a X1 =1 X a = a.
Is there a matrix I such that AI = IA = A for all 2 x 2 matrices A?

6 Suppose A% =AA =A x A and that A® = AAA.

a Find AZ if A:<2 L ) b Find A3 if A:<5 _1).

3 -2
1 0

is called the
identity matrix.

1 2
cIf A=(3 4 try to find A2.
5 6

d Under what conditions can we square a matrix?

1 0

7 Show that if I:<O 1

) then I?=1 and IP =1L

In the Discovery you should have found that:

Ordinary algebra Matrix algebra
e If a and b are real numbers then e If A and B are matrices that can be multiplied
s0 is ab. {closure} then AB is also a matrix. {closure}
e ab="ba foralla,b {commutative} e Ingeneral AB # BA.  {non-commutative}
e a0=0a=0 foralla e If O is a zero matrix then
AO = OA = 0O for all A.
e ab=0 < a=0 or b=0 e AB may be O without requiring
{Null Factor law} A=0 or B=0O.
e a(b+c)=ab+ac e AB+C)=AB+ AC {distributive law}
{distributive law}
e axl=1xa=a {identity law} e If I is the identity matrix ((1) ?) then
Al =TA = A for all 2 x 2 matrices A.
{identity law}
o a" existsforall a >0 and n € R. e A" exists provided A is square and n € Z™.

Note that in general, A(kB) = k(AB) # kBA. We can change the order in which we multiply by a scalar,
but we cannot reverse the order in which we multiply matrices.
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Example 7

) Self Tutor

Expand and simplify where possible:

a (A + 21)?

(A +21)
= (A +2I)(A +2I)
= (A+2D)A + (A +2I)2I
= A? 4 2IA + 2AI + 412
=A%+ 2A +2A +41
= A? 4 4A +41

(A-B)?
= (A—B)(A—B)
=(A—BA—-(A—-B)B
=A% —BA — AB + B?

b

Example 8

b (A — B)?

{X? = XX by definition}
{B(C + D) = BC + BD}

{(C +D)B = CB + DB}
{AI=IA=A and PP=1}

b cannot be simplified further
since, in general, AB # BA.

{X? = XX by definition}
{C(D—-E)=CD - CE}
{(D - E)C = DC — EC}

o) Self Tutor

If A?=2A + 3I,

A3 = A x A?
= A(2A + 3I)
= 2A% + 3A1
= 2(2A + 3I) + 3AI
=T7A +6I

EXERCISE 12C.3

A4

find A% and A? in the linear form kA + II where k and [ are scalars.

=AXxA®

= A(7TA + 6I)

= 7TA? + 6Al

= 7(2A + 3I) + 6A
= 20A + 211

1 Given that all matrices are 2 x 2 and I is the identity matrix, expand and simplify:

a AA+] b (B+2I)B c A(AZ —2A +1)
d A(AZ + A — 2I) e (A+B)(C+D) f (A +B)?
g (A+B)(A-B) h (A+1)? i (31— B)2
2 a If A2=2A — 1, find A® and A* in the linear form kA + II where k and [ are scalars.
b If B2=2I — B, find B3 B*, and B® in linear form.
If C?2=4C — 3I, find C3 and C® in linear form.
3 a If A?2=1, simplify:
i A(A -+ 20) i (A1) il A(A + 31)?
If A% =1, simplify A%(A +I)2.
c If A% =0, simplify:
i A(2A — 31) i A(A + 21)(A — ) i AA +1)?
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Nl= D=
Nl= D=

o auas(t )

b Comment on the following argument for a 2 x 2 matrix A such that A% =

AZ=A
L A2—A=0
~ AA-1)=0

determine AZ.

A:

. A=0 or A—-1=0
. A=0 or I

¢ Find all 2 x 2 matrices A for which A? = A. Hint: Let A = <CCL b )

5 Give one example which shows that “if A2

Example 9

d

= 0O then A = O” is a false statement.

o) Self Tutor

1 2
For A:(3 4

Since A? = aA + bl,

Thus
a=>5

), find constants a and b such that

and

A% = gA + bl

(52 2)=G ) ()
(3% éii) (3 3)+(53)

a+b 2a
15 22 4a+b

a+b=7 and 2a=10

b=2

Checking for consistency:

3a=3()=15 v

6 Find constants a and b such that

e am (1 3)

1 2

7 a For A:(_1

-3

da+b=4(5)+(2)=22 v

A? = aA + bl, given:

3 1
b A_(2 _2>

), find constants p and g such that A% = pA + gl

b Hence, write A® in the linear form rA + sI where r and s are scalars.

¢ Write A* in linear form.
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[ FFHENVERSE OF A 2x 2 MATRIX

The real numbers 5 and % are called multiplicative inverses because when they are multiplied together, the

result is the multiplicative identity 1: 5x # =1 x5=1

. 2 5 3 -5 . 25 3 -5 10

For the matrices (1 3> and <1 2), we notice that (1 3><1 2)_<0 1)_1
3 -5 2 5 10

and (1 2)(1 3>_(0 1)_1'

We say that (% g) and ( _31 _25) are multiplicative inverses of each other.

The multiplicative inverse of A, denoted A~ !, satisfies AA~! = A~'A =1.

To find the multiplicative inverse of a matrix A, we need a matrix which, when multiplied by A, gives the
identity matrix L

We will now determine how to find the inverse of a matrix A.

~_fa b o [w =z
Suppose A_<c d> and A _(y z>
. AA_1:<a b) (w x):l
c d Yy oz
aw+by ar+bz) (1 0
cw+dy cr+dz ) \0 1

aw+by=1 ... (1) d ar+bz=0 .. (3)
cwtdy=0 .2 ¢ \ewtdz=1 .. (@4

d —c
and y= .
ad — be ad — be
—b a

and z = .
ad — be ad — bc

Solving (1) and (2) simultaneously for w and y gives: w =

Solving (3) and (4) simultaneously for z and z gives: = =

1 _
So, if A:((cl b) where ad —bc # 0, then A‘lz—(d b).

d ad—bc \ —¢ a
d b a b
—c a c d

In this case A7'A = (
1 ad —bc bd — bd
" ad—bc \ ac —ac —bc+ad
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Just as the real number 0 does not have a multiplicative inverse, some matrices do not have a multiplicative
inverse. This occurs when det A = ad — be = 0.

For the matrix A:(a b):
c d

e the value ad — be is called the determinant of matrix A, denoted det A

. . 1 d -b
. . i -1 _
o if detA # 0, then A is invertible or non-singular, and A TotA (—c a )

e if detA =0, then A is singular, and A~—! does not exist.

Example 10 ) Self Tutor

Find, if it exists, the inverse matrix of:

= a=(5 4) b o= (% %)

5 6 6 3
a A_<3 4 b B_<4 2>

det A =5(4) —6(3) =2 o det B=6(—2) —3(—4)
11 4 -6 =—-12+12
2 -3 . B~! does not exist.
(54 7)
2 2

EXERCISE 12D.1

1 a Find <5 6><3 _6>, and hence find the inverse of (5 6).

2 3 -2 5 2 3
. 3 —4 2 4 . 3 —4
b Find < 1 9 > < 1 3 >, and hence find the inverse of ( 1 9 >

2 Find det A for A equal to:
37 -1 3 0 0 10
RN U ) A U N O
3 Find detB for B equal to:
3 -2 3 0 0 1 a —a
7)) e G) (G0 e

2 -1
4 For A_<—1 _1>, find:

a detA b det(—A) c det(2A)

5 Prove that if A is any 2 x 2 matrix and k is a constant, then det (kA) = k? x det A.
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a b w oz
6 Suppose A—<C d> and B_<y z)

a Find:
i detA ii detB iii AB iv det (AB)
b Hence show that det (AB) = det A x det B for all 2 x 2 matrices A and B.

1 2 -1 2
7 Suppose A:<3 4> and B:<0 1).

a Find detA and detB.
b Find:
i det(2A) ii det(—A) iii det (—3B) iv det (AB)

8 Find, if it exists, the inverse matrix of:

a (31 o (1) e (1)
@ (o 1) * (%2) (5 )
¢ (7 7) s (43)

Example 11 ») Self Tutor

4 k
Suppose A:(2 _1).

Find A~! and state the values of k for which A~! exists.

If det A = 0, the
matrix A is singular.

1 k
Al — 1 -1 —k\ | 2k+4 2k+4
T _4-—2k\—2 4 ) 2 —4

2k+4 2k+4

A~ exists provided that 2k 44 # 0
k# -2

9 For each of the following matrices A, find A~! and state the values of k for which A~! exists.

(k1 (3 -1 C(k+1 2
aA—<_6 2) bA-(O k) cA_<1 k)

(k-2 & (R k-1 (k12
d A‘( -3 k) e A_<2k 1 > f A_<k2+2 3k>
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FURTHER MATRIX ALGEBRA

In this section we consider matrix algebra with inverse matrices.
Be careful that you use multiplication correctly. In particular,
remember that:

e We can only perform matrix multiplication if the orders of

Premultiply means multiply
on the left of each side.
Postmultiply means multiply
on the right of each side.

the matrices allow it.

e If we premultiply on one side then we must premultiply
on the other. This is important because, in general,
AB # BA. The same applies if we posmultiply.

N

Discovery 2 Properties of inverse matrices

In this Discovery, we consider some properties of invertible 2 x 2 matrices.

What to do:

1 A matrix A is self-inverse when A = AL

. (0 -1 11 (0 1) _
For example, if A_<_1 0) then A __1<1 0)—

Show that if A = A~!, then A% =1L

b Show that there are exactly 4 self-inverse matrices of the form

1 2
-1 0
b If A is any invertible matrix, simplify (A~!)~1(A~!) and

A~! by B.
¢ What can be deduced from b?

2 a Given A-( >, find A=' and (A1)

3 Suppose k is a non-zero number and A is an invertible matrix.

a Simplify (kA)(%A—l) and (%A‘l)(kA).

b What can you conclude from your results?

(5 )=+
(& o)

(A=) (A=1)~! by replacing

4 a If A—<1 _11) and B—<O _13>, find in simplest form:

2 2
i A! ii B!
iv (BA)~! v A B!

b Choose any two invertible matrices and repeat a.

¢ What do the results of a and b suggest?

d Simplify (AB)(B"'A™!) and (B 'A~!)(AB) given that
What can you conclude from your results?

(AB)~
B =1

v 1A

A1 and B! exist.
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From the Discovery you should have found that if A and B are invertible, then:

e (A)1=A o (kA)1=zAT! o (AB)"!=B'A"!

Example 12 w) Self Tutor

If A2=2A + 3L, find A~! in the linear form rA + sI where r and s are scalars.

A2 =2A +3I
A'AZ=A"1(2A+31)  {premultiplying both sides by A~'}
A7TAA =2A7TA + 3471

IA =21+ 3A7! :
a1 Premultiply means
A-20=3A multiply on the left
Al = %(A —2I) of each side.
-1 _1 2
AT =3A-31

EXERCISE 12D.2

2 1 1 2 0 3 .
1 Suppose A—<O 1), B_(—l 0), C_(l 2), and AXB =C. Find X.

N

Suppose X, Y, and Z are 2 x 1 matrices, and A and B are invertible 2 x 2 matrices.
If X=AY and Y = BZ, write:
a Xin terms of Z b Z in terms of X.

3 If A= <_32 _21 >, write A2 in the linear form pA + gl where p and q are scalars.

Hence write A~' in the form A + sI where r and s are scalars.
4 Write A~! in linear form given that:
a A2=4A — 1 b 5A=1-— A2 c 21 = 3A%2 —4A

5 It is known that AB = A and BA = B where the matrices A and B are not necessarily invertible.

Prove that A? = A.
Hint: From AB = A, you cannot deduce that B = 1.

6 Under what condition is it true that “if AB = AC then B = C”?
If X=P 'AP and A® =1, prove that X3 = 1.

8 If aA2 +bA +cdl =0 and X =P !AP, provethat aX? + bX + cl = O.
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I SMULTANEOUS LINEAR EQUATIONS

2043y =4
S + 4y =17

We can solve { algebraically to get =z =5, y=—-2.

Notice that this system can be written as a matrix equation (? i) <;> = ( 147 )

The solution x =15, y= —2 is easily checked as

(39 (%)= (o) - () <

In general, a system of linear equations can be written in the form AX = B where A is the matrix of
coefficients, X is the unknown column matrix, and B is a column matrix of constants.

We can use inverses to solve the matrix equation AX =B for X.

If we premultiply each side of AX =B by A~!, we get
A1 (AX)=A"'B
(AT'A)X=A"'B
IX=A"'B
andso X=A"'B
If the matrix of coefficients A is invertible, then calculating

X = A7!B will give a unique solution to the pair of linear ———unique solution
equations. This indicates that the lines intersect at a single point.

If the matrix of coefficients A is singular, then we cannot calculate X = A~'B. This indicates that either
the lines are parallel and there are no solutions, or that the lines are coincident and there are infinitely many

solutions.
parallel coincident
(no solution) (infinitely many solutions)
Example 13 ) Self Tutor
_(2 3 -1
a If A—(5 4), find A=,

2¢ 4+ 3y =4

ba + dy = 17 in matrix form.

b Write the system {

¢ Hence, solve the simultaneous linear equations.

a det A=2(4)—3(5)
=7

4 -3
-1 _ 1
e (5 D)
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b In matrix form, the system is (g i) (Z) = ( 147> which has the form AX = B.

¢ Premultiplyingby A™!, AT'AX=A"'B
. X=A"'B

G)-=(% ) (&)

|
||H
3
7N
|
—_
w
bt
~

r=5 and y=—2.

EXERCISE 12E

1 Convert into matrix equations:

3r—y=238 b dr — 3y =11 c 3a—b=6

2043y =6 3z 42y = -5 2a+Tb=—4
2 Use matrix algebra to solve the system:

20 —y =6 b dr —4y =5 c x—2y="17

r+3y=14 2z 4+ 3y =—13 5t 4+ 3y = -2

3z +by=4 e dr — Ty =8 p Tr+ 11y =18

20 —y =11 3z —>5y =0 11z — 7y = —11

3 a Show thatif AX =B then X = A~!'B, whereas if XA =B then X = BA~L
b Find X if:

-6 5 3 -2 N 1 2\ (14 -5
<—3 4>X“<0 1) " X<5 —1>“<m 0>
(1 3 (1 -3 i 2 4\ (8 10
. (2 —1>X“<4 2 ) v X<3 —1>“<—5 w)
2 — 3y =28
dr —y=11 "~

i Write the equations in the form AX = B, and find det A.
il Does the system have a unique solution? If so, find it.

4 a Consider the system {

20+ ky =38
dr —y =11~
i Write the system in the form AX = B, and find det A.

b Consider the system {

ii For what value(s) of k does the system have a unique solution? Find the unique solution.

iii Find k£ when the system does not have a unique solution. How many solutions does the system

have in this case?
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Review set 12A

3 2 1 0 )
1 If A:<0 _1> and B:(_2 4>, find:

a A+B b 3A c —2B d A-B
e B—2A f 3A — 2B g AB h BA
i Al j A2 k ABA 1 (AB)~!

2 Find a, b, ¢, and d if:

- )

3 2a b —a a 2
<b 2>+<c d>_<2 6>
3 Write Y in terms of A, B, and C:

a B-Y=A b 2Y+C=A c AY=B
d YB=C e C-—AY=8B f AY ! =B

-3

4 Susan keeps 3 hens in a pen. She calls them Anya, Betsy,
and Charise. Each week the hens lay eggs according to
the matrix

a
L=|5b
c
Write, in terms of L, a matrix to describe:
a the eggs laid by the hens over a 4 week period
b the eggs each hen loses each fortnight when Susan
collects the eggs.

-2 3 -7 9 -1 0 3
5 Suppose A—(4 _1>, —<9 _3>, and C—(O 9 1).

Evaluate, if possible:
a 2A — 2B b AC c CB

6 Given that all matrices are 2 x 2 and I is the identity matrix, expand and simplify:
a A0I-A) b (A—B)(B+A) c (2A —1)?

7 If A%2=05A + 2I, write A3 and A* in the form rA + sL.

8 If A= <§ _21 >, find constants @ and b such that A2 = aA + bl

9 Find, if possible, the inverse matrix of:

= (5 7) » (3 %) - (5 2)

Tz +4y =2

have a unique solution?
kx4 3y = —6 q

10 For what values of k does {
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11 Solve using an inverse matrix:

3z —4y =2 b dr —y =5
5r + 2y = —1 22 +3y =9

12 Suppose A = 2A1L
a Show that A% = 2L

b Simplify (A — I)(A + 3I), giving your answer in the form 7A + sI where r and s are

real numbers.

Review set 12B

1 2 3 0
1 For P=|1 0 and Q=1 4 |, find:
2 3 1 1
a P+Q b Q—P c 3P-Q

2 A library owns several copies of a popular trilogy of
novels, according to the matrix:

paperback hard cover

4 2\ -«— book 1
A= 1|5 2| < book2
6 3/ <— book 3
a At present, the books on loan are described by the
2 0
matrix B= | 1 1 |. Writeamatrix to describe
3 2

the books currently on the shelves.

b The values of the books (in dollars) are described by the matrix C = <
i Which book has value $16?
il Find the total value of the books currently on loan.
3 Prove that for any square matrix A, AO = OA = O.
4 Write X in terms of A and B if:

T 7 8
15 16 20

a 2X=B-A b 3(A+X)=2B c B-4X=A
5 Suppose A<_31 é) 13,(_12 _23> and A+ 2X = —B. Find X.
2 4
6 IfAis (1 2 3) and B is 0 1 |, find, if possible:
3 2
a 2B b iB c AB d

7 If A and B are square matrices, under what conditions are the following true?
a If AB=B then A =1

BA

b (A + B)?2 =A% + 2AB + B?

)
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8 For A:(3 2), find:

-1 1
a detA b det(—2A) ¢ det(A?)
9 Solve using an inverse matrix:
T+y=>5 b 3z +2y =3
z—2y=4 or +3y =4
10 If M= (I; Z) (k__31 _162) has an inverse M—!, what values can k have?
kx + 3y = —6
11 For what values of k does the system Ty have a unique solution?
z+ (k+2)y=2

State the solution in this case.
12 Write 5A%2 —6A = 3I in the form AB = I. Hence write A~! in terms of A and I.
13 Prove that for any 2 x 2 matrix A, A? can be written in the linear form aA + bl
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Opening problem

In a BASE jumping competition from the Petronas Towers in Kuala Lumpur, the altitude of a professional
jumper in the first 3 seconds is given by f(t) = 452 — 4.8t> metres, where 0 <t < 3 seconds.

Things to think about:
a What will a graph of the altitude of the jumper in the first
3 seconds look like?
Does the jumper travel with constant speed?
¢ Can you find the speed of the jumper when:
i t=0 seconds ii t=1 second
ifi ¢ =2 seconds iv t = 3 seconds?

Calculus is a major branch of mathematics which builds on algebra, trigonometry, and analytic geometry.
It has widespread applications in science, engineering, and financial mathematics.

The study of calculus is divided into two fields, differential calculus and integral calculus. These fields
are linked by the Fundamental Theorem of Calculus which we will study later in the course.

Historical note

Calculus is a Latin word meaning ‘pebble’. Ancient

Romans used stones for counting. = —‘1;,.;-? ;; 4 Eﬂ‘_& A 25 CO R LI
The history of calculus begins with the Egyptian "..“f_‘_.:-:'-% b PP rehesy 118
Moscow papyrus from about 1850 BC. #::73,“ 23 ]1 i‘.;' ", t’i'éiu*-" i ;q
The Greek mathematicians Democritus, Zeno of (e ey _ = ‘;"( 1N Ganm2]
Elea, Antiphon, and Eudoxes studied infinitesimals, B s R i 72
dividing objects into an infinite number of pieces in ":’Eﬁj‘: < Al u3 ; L. :'f*’::.l'“
order to calculate the area of regions, and volume of 4 Mn,:r;j: o4 ,}2 A”Hf-‘ﬁ%‘ﬁg
solids. e R R P e e L T

== S A AT T LI,

Archimedes of Syracuse was the first to find the o :‘11\3‘1331,)};?31"32!‘;\%;‘“"5& T\'E’g“'!

tangent to a curve other than a circle. His methods — Jj &v 4 Miaaninz Ga \miltislIn N 32
4T a.’ 1’ )‘-’Jﬂh Aﬁ‘giﬂh V- Um ‘8“"'

were the foundation of modern calculus developed f’ﬁ.&‘!\.h

[Toash P e ANARLG
almost 2000 years later. -:a:j@j DL B e Lane
qoed < Fogz 1A
ok Nawfid Py
: AN T - vl
: - ‘%-‘:77--’!-%- 3
o WAL
= S 3 :
E’: ¢ WL 0E T

Egyptian Moscow papyrus

Archimedes
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~umits

The concept of a limit is essential to differential calculus. We will see that calculating limits is necessary
for finding the gradient of a tangent to a curve at any point on the curve.

The table alongside shows values for f(z) = x? i 1] 1.9 1.99 1.999 1.9999

where z is less than 2, but increasing and getting flz) | 1 | 3.61]3.9601 | 3.99600 | 3.99960
closer and closer to 2.

We say that as  approaches 2 from the left, f(x) approaches 4 from below.

We can construct a similar table of values where x T 3 2.1 2.01 2.001 2.0001

is greater than 2, but decreasing and getting closer Fx) | 9 | 4.41 | 4.0401 | 4.00400 | 4.00040
and closer to 2:

We say that as x approaches 2 from the right, f(x) approaches 4 from above.

So, as x approaches 2 from either direction, f(x) approaches a limit of 4. We write this as lim 22 = 4.

r—2

INFORMAL DEFINITION OF A LIMIT

The following definition of a limit is informal but adequate for the purposes of this course:

If f(xz) can be made as close as we like to some real number A by making x sufficiently close to
(but not equal to) a, then we say that f(z) has a limit of A as x approaches a, and we write

lim f(z) = A.
In this case, f(z) is said to converge to A as x approaches a.

Notice that the limit is defined for x close to but not equal to a. Whether the function f is defined or not
at = a is not important to the definition of the limit of f as = approaches a. What is important is the
behaviour of the function as = gets very close to a.

- 5z + 2

For example, if f(z) and we wish to find the limit as = — 0, it is tempting for us to simply

substitute z =0 into f(z). However, in doing this, not only do we get the meaningless value of %, but
also we destroy the basic limit method.

Observe that if  f(z)

) .
_bzta® _ x5+ then f(z) = {5+x if #0
x

x is undefined if x = 0.

The graph of y = f(xz) is shown alongside. It is the straight by
line y =x 45 with the point (0, 5) missing, called a point of /
discontinuity of the function. \

However, even though this point is missing, the /imit of f(x) as missting
x approaches 0 does exist. In particular, as = — 0 from either pomn
direction, f(z) — 5.
2 -
We write lin%] ST _ 5 which reads: T
Tr— T

2
“the limit as = approaches 0, of f(x) = brtw , 1857,
T
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In practice we do not need to graph functions each time to determine limits, and most can be found

algebraically.
Example 1 ) Self Tutor
. z2 + 3z . < —
Evaluate: a lim 22 b lim ¢ lim
r—2 z—0 az r—3 x —3

a 22 can be made as close as we like to 4 by making x sufficiently close to 2.

lim 22 = 4.
r—2
2 2 _
b lim 23 ¢ lim 2
x—0 T z—3 T —3
1 1
— lim 2243 — lim &&=
r—0 Fa| z—3 =3
= lin(l) (x+3) since z#0 = lirrg (x+3) since x#3
T— T

EXERCISE 13A

1 Evaluate:

a lim (z+4) lim (5—2z) lim (3z — 1)
z—3 r——1 r—4
d lim (522 — 3z +2) lim h2(1 — h) lim (2% + 5)
r—2 h—0 x—0
2 Evaluate:
a lim 5 lim 7 ¢ lim ¢, c a constant
x—0 h—2 x—0
3 Evaluate:
2 2 —1
a lim == lim "~ +5% ¢ lim d lim %
r—1 T h—2 h z—0 x+1 z—0 T
4 Evaluate the following limits:
2 2 2 2 _
a limZ sz lim £ +or lim =2 —%
x—0 x x—0 xT z—0 x
2 2 _ 3 _
d lim 2h* + 6h lim 3h 4h lim h 8h
h—0 h h—0 h h—0 h
2 _ 2_ 9 2 _
g lim r-z lim z lim 2 —% 6

rz—1 = —1

r—2 T —2

z—3 x—3

" [RATES OF CHANGE

A rate is a comparison between two quantities with different units.

We often judge performances by rates. For example:
e Sir Donald Bradman’s average batting rate at Test cricket level was 99.94 runs per innings.
e Michael Jordan’s average basketball scoring rate was 20.0 points per game.
e Rangi’s average typing rate is 63 words per minute with an error rate of 2.3 errors per page.
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Speed is a commonly used rate. It is the rate of change in distance per unit of time.

We are familiar with the formula:

distance travelled
time taken

average speed =

However, if a car has an average speed of 60 kmh~! for a journey, 4 distance travelled
it does not mean that the car travels at exactly 60 kmh~! for the
whole time.

In fact, the speed will probably vary continuously throughout the
journey. T 1h

So, how can we calculate the car’s speed at any particular time?

timz
Suppose we are given a graph of the car’s distance travelled against 4 distance travelled

time taken. If this graph is a straight line, then we know the speed
is constant and is given by the gradient of the line.

If the graph is a curve, then the car’s instantaneous speed is given idistance

by the gradient of the tangent to the curve at that time. time

time

Historical note

The modern study of differential
calculus originated in the 17th century
with the work of Sir Isaac Newton
and Gottfried Wilhelm Leibniz. They
developed the necessary theory while
attempting to find algebraic methods
for solving problems dealing with the
gradients of tangents to curves, and
finding the rate of change in one
variable with respect to another.

Isaac Newton 1642 — 1727 Gottfried Leibniz 1646 — 1716

Discovery 1 Instantaneous speed

A ball bearing is dropped from the top of a tall building. The \ '
distance D it has fallen after ¢ seconds is recorded, and the \\\\\ \ [ \ I || ”
following graph of distance against time obtained. nps

We choose a fixed point F on the curve when ¢ = 2 seconds.
We then choose another point M on the curve, and draw in the line
segment or chord FM between the two points. To start with, we N
let M be the point when ¢ = 4 seconds. 43\
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AD The average speed in the time interval 2 <t <4
80 __ distance travelled
M(4,80) - time taken

20 chord—, __ (80—20)m
40 —curve T (4-2)s

60 =il

= 3% ms

20 F(2,20) - 320 o

In this Discovery we will try to measure the instantaneous speed of the ball when ¢ = 2 seconds.

What to do:

1 Click on the icon to start the demonstration.

F is the point where ¢ = 2 seconds, and M is another point on the curve.

To start with, M is at ¢ = 4 seconds.

DEMO

va‘é

&R

The number in the box marked gradient is the gradient of the chord FM. This is the average speed
of the ball bearing in the interval from F to M. For M at t = 4 seconds, you should see the average

speed is 30 ms~1.

2 C(Click on M and drag it slowly towards F. Copy and complete the
table alongside with the gradient of the chord FM for M being the
points on the curve at the given varying times ¢.

3 Observe what happens as M reaches F. Explain why this is so.

4 Now move M to the origin, and then slide it towards F from the left.
Copy and complete the table with the gradient of the chord FM for
various times .

5 a What can you say about the gradient of FM in the limit
as t— 27

b What is the instantaneous speed of the ball bearing when
t = 2 seconds? Explain your answer.

THE TANGENT TO A CURVE

A chord of a curve is a straight line segment which joins any two
points on the curve.

The gradient of the chord AB measures the average rate of change of
the function values for the given change in z-values.

A tangent is a straight line which touches a curve at a single point.
The tangent is the best approximating straight line to the curve
through A.

The gradient of the tangent at point A measures the instantaneous rate
of change of the function at point A.

As B approaches A, the limit of the gradient of the chord AB will be
the gradient of the tangent at A.

gradient of FM

2.5

2.1

2.01

gradient of FM

1.5

1.9

1.99
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The gradient of the tangent to y = f(z) at x = a is the instantaneous rate of change in f(z) with
respect to « at that point.

Discovery 2 The gradient of a tangent

r £ (z) =22 Given a curve f(z), we wish to find the gradient of the

tangent at the point (a, f(a)).

In this Discovery we find the gradient of the tangent to
A(L1) f(x) = 2% at the point A(1, 1).

o
=Y

What to do: "'K

1 Suppose B lies on f(z) = 22, and B has coordinates (z, z2).

2 _
a Show that the chord AB has gradient z

a Point B | gradient of AB
LAY f(ac) :xz ) (5, 25) 6

B(z,z?) 3
2

1.5

A(1,1

_ A N 1.1

% v 1.01

b Copy and complete the table shown. 1.001

¢ Comment on the gradient of AB as x gets closer to 1.

2 Repeat the process letting x get closer to 1, but from the left of A. Use the points where
x =0, 0.8, 0.9, 0.99, and 0.999.
3 Click on the icon to view a demonstration of the process.

4 What do you suspect is the gradient of the tangent at A?

Fortunately we do not have to use a graph and table of values each time we wish to find the gradient of a
tangent. Instead we can use an algebraic and geometric approach which involves limits.

z2 -1

From Discovery 2, the gradient of AB =

x—1"
As B approaches A, * — 1 and
the gradient of AB — the gradient of the tangent at A.

B . . .
! So, the gradient of the tangent at the point A is
B2 9
. 4 —1 .
m, = lim As B approaches A, the gradient of
z—1 x—1
AB approaches or converges to 2.
— ljm &+DE-D
z—1 r—1 \
et

< :lirri(x—i-l) since = #1 eSS
A tangent at A =2 ;

()

(<
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EXERCISE 13B
1 Use the method in Discovery 1 to answer the Opening Problem on page 334.

2 a Use the method in Discovery 2 to find the gradient of the tangent to y = 2 at the point (2, 4).

2
. —4 . - . .
b Evaluate lim Z X and provide a geometric interpretation of this result.

r—2 T —

'THE DERIVATIVE FUNCTION

For a non-linear function with equation y = f(x), the gradients of
the tangents at various points are different.

Our task is to determine a gradient function which gives the
gradient of the tangent to y = f(xz) at x = a, for any point a in
the domain of f.

o
<Y

The gradient function of y = f(z) is called its derivative function and is labelled f’(z).
We read the derivative function as “eff dashed x”.

The value of f/(a) is the gradient of the tangent to y = f(x) at the point where z = a.

Example 2 ) Self Tutor

For the given graph, find f’(4) and f(4).

The graph shows the tangent to the curve y = f(x) at the point where x = 4.
The tangent passes through (2, 0) and (6, 4), so its gradientis f'(4) = % =1
The equation of the tangentis y— 0= 1(z —2)
y=x—2
When z =4, y =2, so the point of contact between the tangent and the curve is (4, 2).

f4) =2
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EXERCISE 13C

1 Using the graph below, find: 2 Using the graph below, find:
a f(2) b f'(2) a f(0) b f(0)
Ay Y
3 y=1/(x) \
< B 4

y=f(z)
4 B
A\ Ov \ v

3 Consider the graph alongside. Ay
Find f(2) and f/(2). (4,5)g

Discovery 3 Gradient functions

The software on the CD can be used to find the gradient of the tangent to a function f(x)  GRADIENT

at any point. By sliding the point along the graph we can observe the changing gradient FUNCTIONS

of the tangent. We can hence generate the gradient function f(x). Y
&)

What to do: g

1 Consider the functions f(z) =0, f(z)=2, and f(x)=4.
a For each of these functions, what is the gradient?

b Is the gradient constant for all values of x?

2 Consider the function f(z) = mz+c.
a State the gradient of the function. b Is the gradient constant for all values of x?

¢ Use the CD software to graph the following functions and observe the gradient function f/(x).
Hence verify that your answer in b is correct.

i fla)=2-1 ii f(z)=3z+2 i f(z)=—-2z+1
3 a Observe the function f(x) = x? using the CD software. What #ype of function is the gradient
function f’(z)?
b Observe the following quadratic functions using the CD software:
i f(z)=22+z2-2 ii f(xr)=222-3
il f(z)=—-2?+22z-1 iv f(z)=-322-31x+6
¢ What sype of function is each of the gradient functions f/(z) in b?
4 a Observe the function f(z) =Inz using the CD software.
b What #ype of function is the gradient function f’(x)?
¢ What is the domain of the gradient function f’(x)?
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5 a Observe the function f(x)=e* using the CD software.
b What is the gradient function f’(x)?

" *) | DIFFERENTIATION FROM FIRST PRINCIPLES

Consider a general function y = f(x) where A is the point (z, f(z)) and B is the point
(x +h, f(z+h)).

The chord AB has gradient — L&) = /(@)

r+h—x
_ f@th) - f@)
h

If we let B approach A, then the gradient of AB approaches
the gradient of the tangent at A.

Py

O T z+h )

So, the gradient of the tangent at the variable point (z, f(x)) is }Lin%) w .

This formula gives the gradient of the tangent to the curve y = f(z) at the point (z, f(x)) for any value
of x for which this limit exists. Since there is at most one value of the gradient for each value of z, the
formula is actually a function.

The derivative function or simply derivative of y = f(x) is defined as

o f@+h) = f(2)
f'(@) = lim -

When we evaluate this limit to find a derivative function, we say we are differentiating from first principles.

Example 3 ) Self Tutor

Use the definition of f’(z) to find the gradient function of f(z) = 2.

h—0 h
— Jim @072’
h—0 h
~ fim 2% 4 2ha + h? — 2%
h—0 h
— lim 2G2+h)
h—0 }fl

= }llirr%) (2z + h) {as h #0}
=2z
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ALTERNATIVE NOTATION

If we are given a function f(x) then f’(x) represents the derivative function.

If we are given y in terms of z then 3’ or dy are commonly used to represent the derivative.
X
3_@/ reads “dee y by dee x” or “the derivative of y with respect to x”.
X
dy . . . dy .
< 18 not a fraction. However, the notation 5, sa result
X X
of taking the limit of a fraction. If we replace h by 6z and
flx+h)— f(x) by by, then y+ by
f'(x) = lim J@t M =@ pecomes
h—0 h
by Y
") = lim =
f ( ) 6a}—>0 bx _
_dy 0
T dx’

THE DERIVATIVE WHEN x= = a

The gradient of the tangent to y = f(z) at the point where 2 = a is denoted f’(a), where

fla+h) — f(a)

f'(a) = lim

h
Example 4 ) Self Tutor
Use the first principles formula f/'(a) = }llin% w to find the

instantaneous rate of change in  f(z) = 22 + 2z at the point where z = 5.

f(5) =5%+2(5)=35

h—0 h
~ fim (54+h)2+2(5+h)—35
h—0 h
£/(5) = lim 254+ 10h + h2 + 10+ 2h — 35
h—0 h
i h2 4+ 12h
h—0 h
— %%}%%112) {as h %0}
=12

the instantaneous rate of change in f(z) at x =5 is 12.
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EXERCISE 13D

1 Find, from first principles, the gradient function of:
a f(z)==z b f(z)=5 ¢ f(x)=2x+5
2 Find Z—y from first principles given:
T
a y=4—=x b y=22-3x c y=2>+zx-1

3 Use the first principles formula f'(a) = lim flath - f(a)

lim to find the gradient of the tangent to:

a f(x)=3z+5 at z=-2
¢ f(z)=22+3x—4 at =3

" | |SIMPLE RULES OF DIFFERENTIATION

Differentiation is the process of finding a derivative or gradient function.

f(x)=5-22% at z =3
f(r)=5—-2z—32% at x = -2

2 T ==

Given a function f(x), we obtain f’(x) by differentiating with respect to the variable x.

There are a number of rules associated with differentiation. These rules can be used to differentiate more
complicated functions without having to use first principles.

Discovery 4 Simple rules of differentiation

In this Discovery we attempt to differentiate functions of the form z", cx™ where c is a constant, and

functions which are a sum or difference of polynomial terms of the form cz™.

What to do:

Remember the
1 Differentiate from first principles: a2 b 22 ¢ 2* binomial expansions.

2 Consider the binomial expansion:
(+h)"=(3)z"+ ()" th+ (5)z" 2R + ...+ (}) A"
=z" +nz" 1h+ ('2’) " 2R 4 L+ A

Use the first principles formula  f'(z) = ]lin%] w

to find the derivative of f(x) = 2™ for z € Z™.

3 a Find, from first principles, the derivatives of: i 42? i 223
b By comparison with 1, copy and complete: “If f(z) = cz™, then f'(z)=......

4 a Use first principles to find f’(x) for:
i f(zr)=2%+3x i f(z) =2%— 222
b Copy and complete: “If f(z)=u(z)+v(z) then f'(z)=.....7
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The rules you found in the Discovery are much more general than the cases you just considered.

For example, if f(z) = 2™ then f’(z) = naz™ ! is true not just for all n € Z*, but actually for all
ncR.

We can summarise the following rules:

f(z) f'(z) Name of rule
¢ (a constant) 0 differentiating a constant
7z na™! differentiating ="
cu(x) cu'(z) constant times a function
u(z) +v(z) | W(z) +' () addition rule

The last two rules can be proved using the first principles definition of f'(z).
e If f(z)=cu(x) where cis a constant, then f'(z) = cu/(z).

Proof: f'(z) = lim fleth) — (@)

h—0 h

— lim cu(x + h) — cu(x)
h—0 h

— lim ¢ |:u(x +h)— u(m)]
h—0 h

— ¢ lim u(x + h) — u(x)

h—0 h
=cu'(z)

o If f(z)=u(z)+v(z) then f'(z)=1u'(z)+ v (x)
fl(l') = T fl+h)— f(=)

Proof:
h—0 h
— lim <u(a: +h)+v(@+h) — [u(z) + U(m)])
h—0 h
— lim <u(m + h) —u(z) + v(z + h) — v(ac))
h—0 h
— lim u(x + h) — u(x) 1 lim v(x + h) —v(z)

h—0 h h—0 h
=u/(z) +'(2)

Using the rules we have now developed we can differentiate sums of powers of z.

For example, if f(z)=3z"+22% — 52> + 72 +6 then
f'(x) = 3(42®) + 2(32°) — 5(2x) + 7(1) + 0
=122° 4 62% — 10z 4 7
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Example 5 ) Self Tutor

If y=32%— 4z, find Z—y and interpret its meaning.
X

As y=322—dz, ¥ _6r—4
dx

;l—y is: e the gradient function or derivative of y = 3x? — 4z from which the gradient of

v the tangent at any point on the curve can be found

e the instantaneous rate of change of y with respect to x.
Example 6 ) Self Tutor

Find f’(z) for f(x) equal to:

a 50°+62%—3x+2 b To—24+2

x €T
a f(z) =52 + 62% — 3z +2 b f(x)z?x—é—i—%
T T
. f'(x) = 5(3z%) + 6(2x) — 3(1)

=T7r—4z7 ' + 3273
o f(x) =7(1) —4(—=1272) + 3(=3z™%)
=T7+4r 2 -9z

4 9

4

= 1522 + 122 — 3

Remember that

Example 7 ) Self Tutor

Find the gradient function of y = 22 — 4 and hence find the gradient of the tangent to the function
x

at the point where x = 2.

y=a?— 4 W gy 4(—1z72)
T dx
=% — 427! =9z + 4272
4
pu— 2 —_—
T + 2

When 2 =2 % —44+1=5
dx

So, the tangent has gradient 5.
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Example 8 ) Self Tutor
Find the gradient function for each of the following:
a f(z)=3/z+ - b gz)==x 7
a f(:z:):3\/5—|—Z b g(;t:)=:132—i
x vV
1
=3z? 42271 =2% —4x 2
1 _3
f'(2) =3(z2 %) +2(-127%) g (@) =2z —A(—5z *)
1 _3
=327 —227? =2z + 2z 2
_s 2 o %
2\/x x? z\/T
EXERCISE 13E
1 Find f/(z) given that f(z) is:
a 23 b 223 c 7z d 6yx
e 3V f 2242 g 4— 227 h 22+3x-5
_ _ 3
i %x4—6x2 j 3z —6 Kk 2ac23 I z° +5
x x X
m — n 7 o (2z-1) P (z+2)
2 Find dy for:
dx
a y=25r>—142>—-1.3 b y=m2? c yz%
5
d y=100x e y=10(z+1) f y=dnz3
3 Differentiate with respect to x:
2 _g,d
a 6z+2 b 2z c (51 d 6””3—9“”
X
e (z+1)(z—2) f %+6\/E g 4;10—4i h z(z+1)(2z—5)
xX €T
4 Find the gradient of the tangent to:
a y=2> at z=2 b y:% at the point (9,%)
9 222 — 5 . 3
c y=22°—-3z+7 at v=-1 d y= at the point (2, 3)
7:52—4 h . 4 3 f 73:3—430—8 -1
e y=—s at the point (4, §) y=——=— at x=-1

xT

5 Suppose f(z)=2>+ (b+1)z+2c¢, f(2)=4, and [f/(-1)=2.
Find the constants b and c.
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6 Find the gradient function of:

a f(x)=4/T+a b f(x)= Yz ¢ fla)=——
d f(z)=2z—x e f(m):%—f) f f(z) =322 —zyx
g J@)= 5~ h fa)=20——-

7 a If y=4z— é, find Z—y and interpret its meaning.
x X
b The position of a car moving along a straight road is given by S = 2t2 + 4t metres where ¢ is

. . . ds . . .
the time in seconds. Find o and interpret its meaning.

¢ The cost of producing x toasters each week is given by C = 1785 + 3z 4 0.002z2 dollars.

. ac . . .
Find . and interpret its meaning.
XL

In Chapter 2 we defined the composite of two functions g and f as (go f)(x) or gf(x).
We can often write complicated functions as the composite of two or more simpler functions.

For example y = (22 + 3z)* could be rewritten as y = u* where u =22+ 3z, oras
y=gf(r) where g(z)=2z* and f(z)=2%+ 3z

Example 9 ) Self Tutor
There are several
Find: a gf(z) if g(z) =+ and f(z)=2-—3x [possible answers for b]
b g(z) and f(z) such that gf(z) = rlﬂ \
1 1
a g9f(x) b gf(x>:m_x2 ) ",j
=9(2—3x)
_ 5 3z g(x):i and f(z) =z — 2 f J

EXERCISE 13F.1
1 Find gf(x) if:

a g(x)=22 and f(z)=2x+7 b g(r)=2x+7 and f(x) =22
¢ g(z)=+/r and f(z)=3—4z d g(z)=3—4z and f(z)=+x
e g(x):i and f(z) =2%+3 f g(z)=22+3 and f(x):%

2 Find g(x) and f(z) such that gf(z) is:

a (3z+10) b L ¢ VaZ—-3z a 2

2z + 4 (3x—3:2)3
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DERIVATIVES OF COMPOSITE FUNCTIONS

The reason we are interested in writing complicated functions as composite functions is to make finding
derivatives easier.

Discovery 5 Differentiating composite functions

The purpose of this Discovery is to learn how to differentiate composite functions.

dy

Based on the rule “if y = x™ then =
X

= na""1”, we might suspect that if y = (22 + 1)? then
. 2(2z +1)!. But is this so?

dx

What to do:

1 Expand y = (22 + 1)? and hence find 3_@/ How does this compare with 2(2x + 1)1?
X

2 Expand y = (3z+ 1)? and hence find j_y How does this compare with 2(3z + 1)1?
X

3 Expand y = (az + 1)?> where a is a constant, and hence find Z—y How does this compare with
X

2(az +1)1?
4 Suppose y = u?.

a Find &

du
b Now suppose u=az+1, so y= (ax+ 1)

i Find d—u il Write dy from a in terms of x.
dx du
iii Hence find % X Z—u iv Compare your answer to the result in 3.
U X

. . d .
¢ If y=wu? where u is a function of =, what do you suspect d—y will be equal to?
T

5 Expand y = (22 + 3z)? and hence find ;i_y

X
Does your answer agree with the rule you suggested in 4 ¢?

6 Consider y = (2z +1)3.
a Expand the brackets and hence find Z—y
T

b Ifwelet w=2x+1, then y=u>

- . d . . d e e
i Find &£ ii Find —y, and write it in terms of x.
dx du
o dy  du . .
iii Hence find = N iv Compare your answer to the result in a.
U X

7 Copy and complete: “If y is a function of u, and w is a function of z, then % = c00000 ”
XL
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THE CHAIN RULE

dy dy du
y = g(u) where u = f(x) then e e

This rule is extremely important and enables us to differentiate complicated functions much faster.

For example, for any function f(x):

dy

It y=[@" then L =nlf@]"* x f/().
@
Example 10 ) Self Tutor
Find 2 it
dz
— (2 _ 9.4 __ 4
a y=(z*—2x) b y —
a y = (2% — 2x)* b Y= 4
Vv1—2z
y=u* where u=2z?-2z 1
c.oy=4u 2 where u=1-2z
Now % _ dydu {chain rule} d du du
dr du dx Now d_y = d—y - {chain rule}
= 4u3(2x — 2) v uar
3
= 4(x? — 22)3 (22 — 2) =4x(—3u 2)x(-2)
3
=4u 2
The brackets around _3
2z — 2 are essential. =4(1-2z) ®
A
®
81
EXERCISE 13F.2
1 Write in the form au'™, clearly stating what u is:
1 2
_ b V22—
Py % —3x c —
d Vad — a2 e ! R
(3—12)3 z2 -3
2 Find the gradient function % for:
X
a y= (42 —5)? b y:512 c y=+3x—a?
— 2k
d y=(1-3z)* e y=6(5—1)3 foy= 23— 22
3
—_ 6 -+ i oy=2(a2— Z)
g y_(5x—4)2 h oy 3z — x2 R 2(&0 x
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3 Find the gradient of the tangent to:

a y=v1-22 at z=3 b y=B3z+2)5 at z=-1
c y:; at z=1 d y=6xv1—2z at xt=0
2z —1)4
e y=—+ _ at z=4 f —(ac—i—l)?) at =1
y_x+2\/5 o y= x o

4 The gradient function of f(x) = (2x — b)® is f'(x) = 2422 — 24x + 6.
Find the constants a and b.

d
where a and b are constants. When x =3, y =1 and A —%.

5 Suppose y = a4
pp y_\/l—‘r_bw dx

Find a and b.

Wl

6 If y=23 then 2 =y53.

a Find dy and d—m, and hence show that dy X do _ 1.
dx dy dr dy
dy _ dzx

b Explain why p

T

/| [THE PRODUCT RULE

We have seen the addition rule:
If f(z)=u(z)+ov(z) then f[f'(x)=1u'(x)+ ' (z).

We now consider the case f(z) = u(z)v(z). Is f/(x)=u'(z)v'(z)?

X o= 1 whenever these derivatives exist for any general function y = f(z).
Yy

In other words, does the derivative of a product of two functions equal the product of the derivatives of the
two functions?

Discovery 6 The product rule

Suppose u(xz) and wv(z) are two functions of z, and that f(z) = u(z)v(x) is the product of these
functions.

The purpose of this Discovery is to find a rule for determining f'(z).
What to do:
1 Suppose u(z) =z and v(z) =z, so f(z)= x>
a Find f'(x) by direct differentiation. b Find u/(z) and o'(z).

¢ Does f/'(z)=1u/(z)v'(x)?

(MY

2 Suppose u(xz) =z and v(z)=+/z, so f(z)=zyx=1z2.
a Find f'(x) by direct differentiation. b Find «/(z) and v/(z).
¢ Does f'(z)=u'(z)v'(x)?
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3 Copy and complete the following table, finding f/(z) by direct differentiation.

f(z) f(@) | w@) | v(x) | u(x) | v(z) | W(z)o(z) +u()v'(z)
z(z+1) 07 z+1
(x —1)(2 - x?) z—1]|2-2°

4 Copy and complete: “If f(x) = u(z)v(z) then f'(z)=....7

THE PRODUCT RULE

If f(x) =wu(x)v(x) then f/(z) =u'(z)v(z)+ u(z)v'(x).

dy du dv

Alternatively, if y = wv where v and v are functions of z, then — = —v 4+ u —.
de dz dx

Example 11 %) Self Tutor

Hind® S2iE

T

a y=+z(2x+1)3 b y=ax%?-22)!

1
2

a y=./x(2x+1)® is the product of u =22 and v = 2z + 1)

' =2z 2 and v =3(2z+1)>x2  {chain rule}
=6(2r +1)?
Now % =u'v+uw’  {product rule}
X
1 1
=1z 220 +1)° + 22 x6(2z+1)*
=1z 22z +1)° + 622 (22 + 1)?

b y=x?(2? —2x)* is the product of u=2? and v = (2? — 2z)*
v =2x and v = 4(2? — 22)3(2z — 2) {chain rule}

Now % =u'v +u’ {product rule}
X

= 2z(2% — 22)* + 22 x 4(2% — 22)3(2z — 2)
= 2z(2? — 22)* + 42%(2® — 22)3(22 — 2)

EXERCISE 13G
1 Use the product rule to differentiate:

a f(z)==z(z—-1) b f(z)=2z(x+1) ¢ f(zx)=22Vx+1
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2 Find % using the product rule:
X

a y=2%2r-1) b y=4r(2z+1)3 c y=23/3—-z

d y=z(zx—3)? e y=52?(3z% - 1)? f y=z(z—2?)3
3 Find the gradient of the tangent to:

a y=2*(1-22)% at z=-1 b y=vz(z?—z+1)? at z =4

c y=xy1—2r at xt=—4 d y=23V/5—22 at z=1.
4 Consider y=z(3—1)2
dy _ (3—=)(3—5z)
a Show that w2z
b Find the z-coordinates of all points on y = /z(3 — x)? where the tangent is horizontal.
¢ For what values of z is Z—y undefined?
X

5 Suppose y = —2z2(z +4). For what values of = does Z—y =10?
X

. . :c2 +1 \/E :r3 . .
Expressions like 5 T3 and TR are called quotients because they represent the division
of one function by another.

Quotient functions have the form Q(z) = %
Notice that u(x) = Q(z) v(x)
sod(z) = Q' (x)v(z) + Qx) v (x) {product rule}
v(2) - Q) (z) = Q' () v(x)
Q@) o) = u/(x) - 220/ (2)
Q@) o(e) = LD
Q' (z) = () v(Tl)}(;)?Q(w) V(@) when this exists.
THE QUOTIENT RULE
_ u() ooy (@) v(e) —u(z) v (z)
If Q(x) = T:E) then Q' (x) = (@2 .

. . u . dy u'v—uv
Alternatively, if y = — where u and v are functions of z, then o = —.
v
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Example 12

Use the quotient rule to find o if:

Now

143z
z2 +1

14 3z
z2 +1

dy
dx

dy
XL
_ V=
b y= (1 — 2x)2
is a quotient with u=14+3z and v=2z2+1
u =3 and v =2z
[
0 2uv {quotient rule}
v
3(x2 + 1) — (1 + 3z)2z
(:z:2 + 1)2
322 +3— 2z — 622
- (22 +1)2
3 — 2z — 322
(2 +1)2
1
is a quotient with ~ u = x2 and v = (1-2z)?
u'=232 2 and v =2(1-2z)" x (-2)
= —4(1 — 2z)
UI’U — ’LL’UI .
— {quotient rule}
_1 1
sz 2(1—22)2 — 22 x (—4(1 - 2z))
(1 —2z)4
_1 1
%x 2(1—22)2 +422 (1 — 2x)
(1—2x)4
i e (25
2ve Ve {look for common factors}
(1 —2x)43
1—2x+ 8z
2/x(1 — 2x)3
6x + 1
2y/z(1 — 2x)3

Simplification of % is often unnecessary,
especially if you simply want the gradient
of a tangent at a given point. In such cases,
substitute a value for « without simplifying
the derivative function first.

(Chapter 13)

w) Self Tutor

{chain rule}
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EXERCISE 13H

1 Use the quotient rule to find Z—y if:
XL
1+ 3z z2 x
Yy=5-2 V=% +1 Y= 23
VT z2 -3 x
d = e = f y=
V=1 "% L Y V1= 3z
2 Find the gradient of the tangent to:
3
xT xX
a = at =1 b = at r=-—1
V=1 y=2 +1
N z2
c y= at x =4 d y=—— at = -2
y 2x + 1 y A /w2 + 5
2 d 1
3 alf y=2Y> chowthat - _ZFL
1—=x dz  /x(1 —x)2
. d . -
b For what values of x is d—y i zero ii  undefined?
XL
z2 -3z +1 dy 2 +4z —7
4 a If y=———— showthat = ="—"_——
Tx+2 dx (x +2)2
b For what values of x is Z—y i zero ii undefined?
XL

" || |DERIVATIVES OF EXPONENTIAL FUNCTIONS

In Chapter 4 we saw that the simplest exponential functions have the form f(z) = b where b is any
positive constant, b # 1.

The graphs of all members of the Ay
y=(0.2)"

exponential family f(z) = b” have the
following properties:
e pass through the point (0, 1)
e asymptotic to the z-axis at one end
e lie above the z-axis for all x.
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Discovery 7 The derivative of y = b”

The purpose of this Discovery is to observe the nature of the derivatives of f(xz) = b* for various

values of b.
What to do:
1 Use the software provided to help fill & 0y CAI;-EKCLDUS
in the table for y = 2%: % y - -
o
0 —{(®)
0.5 %
1
1.5
2

2 Repeat 1 for the following functions:
a y=3" b y=57 c y=(05)"
3 Use your observations from 1 and 2 to write a statement about the derivative of the general
exponential y =b* for b>0, b#1.

From the Discovery you should have found that:

If f(z)=b" then f'(z)= f'(0) x b®.

Proof:
It f(z) = b,
, prth _ pz .. .. L.
then f'(z) = lim - {first principles definition of the derivative}
T ph
= lim et -1
h—0 h

h _
=b" x (hm bT1> {as b" is independent of h}

1y p. FO+R) = f(0) I
But f/(0) = lim — -

gradientis f/(0)

)
.

Given this result, if we can find a value of b such that f/(0) = 1, then we will have found a function which
is its own derivative
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h _
We have already shown that if f(z) =b" then f'(z)="b" <lim b 1>.

h—0 h
e . .obh—1
So if f'(xz) = b then we require }lLln% — = 1.
lim b" = lim (1 4 h)
h—0 h—0

. 1 . 1 .
Letting h = =, we notice that — — 0 if n — oo
n n

1 1
lim b7 = lim <1+—)
n

n—oo n—oo
1 n
b= lim (1) if this limit exists
n—00 n

We have in fact already seen this limit in Chapter 4
Discovery 2 on page 123.

We found that as n — 0o, e® is sometimes written
as exp(z). For example,

(1 + 1) — 2.718 281828459 045235 .... exp(l — z) = ' =%,
n

and this irrational number is the natural exponential e.

We now have: If f(x)=e" then f'(x)=e”.

THE DERIVATIVE OF /()
The functions e~%, €2®+3, and e~*" all have the form ef(®),
Since e* >0 forall z, ef(* >0 for all 2, no matter what the function f(z).

Suppose y = /@ =¥ where u = f(z).

Now ¥ — dydu {chain rule}
dx du dx ] .
d Function Derivative
u au
=% e e*
_ ef(z) « f/(x) ef(f) ef(m) X f/(.'E)
Example 13 ) Self Tutor
Find the gradient function for y equal to:
2x
a 2% 4e 37 b 2% c =
T
T —3x dy T —3x
a lf y=2"+e then d—:2e +e 77 (=3)
X
L
_ 2, dy _ —x 2 —x(
b If y=ua‘e then - = 2ee”" +xe " (—1) {product rule}
X

=2ze " — g% ®
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e2r dy  e2%(2)z — e22(1)

c If y= — then R {quotient rule}
ez 1)
= —
Example 14 ) Self Tutor
. . . 1
Find the gradient function for y equal to: a g —1)2 b —
s v (e"=1) Noresi
1
a y=(e—1)73 b y=R2e"+1) 2
— .3 — T _ _1
=u” where u=e 1 =u 2 where u=2e%+1
dy dy du { .
g chain rule} dy _ dy du i
de  du dzx T du b {chain rule}
— 3,2 % 3
=3u T _ _%u 2 d_u
5 . dx
=3(e"—1)*xe 3
:36.1:(6.7:71)2 = —%(28_:24—1) 2 X 2€—$(_1)
3
=e "2 +1) 2
EXERCISE 131
1 Find the gradient function for f(x) equal to:
a et b e"+3 ¢ exp(—2z) d e?
e 2 2 f1—2° g 4 — 3¢ h
1
i e joes k 10(1 + e2®) I 20(1 — e 2%)
m e2rtl n ci 0 o127 p ¢ 00%
2 Find the derivative of:
a ze” b z3e® c & d X
T et
2,3z f i —x h e’ +2
e ‘e \/5 g \/Ee e~ T 41
3 Find the gradient of the tangent to:
a y=(e*+2)* at z=0 b y= L at 2=0
—e xr

c y=+e2*+10 at x =1n3.
4 Given f(x)=e +2 and f(0) = -8, find k.
5 a By substituting ™2 for 2 in y = 2%, find dy
b Show that if y =56 where b >0, b# 1, then Z—y =b" x Inb.
X

6 The tangent to f(x) = 2%e~* at point P is horizontal. Find the possible coordinates of P.
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'DERIVATIVES OF LOGARITHMIC FUNCTIONS

Discovery 8 The derivative of Inx
If y =Inz, what is the gradient function? CALCULUS
DEMO

What to do:

1 Click on the icon to see the graph of y = Inxz. Observe the gradient function being :F‘
drawn as the point moves from left to right along the graph. |

2 Predict a formula for the gradient function of y = Inx.

Find the gradient of the tangentto y =Inz for = = 0.25, 0.5, 1, 2, 3, 4, and 5.
Do your results confirm your prediction in 27

d 1
From the Discovery you should have observed: If y=Inz then % =

The proof of this result is beyond the scope of this course.

THE DERIVATIVE OF In f(x)

Suppose  y = In f(x)
y=1Inu where u= f(z).

Now dy _ dy du {chain rule} Function | Derivative
dx du dzx 1 1
@ B 1 d_u nr ;
dr  u dx ,
_f'@) In f(x) J;(j))
f(z)
Example 15 ) Self Tutor
Find the gradient function of:
a y=In(kz), k a constant b y=In(l-3z) c y=z’lnx
a y = In(kz) b y =In(1 — 3x) c y=2°Inz
d_yzi - @: -3 @:3x2lnx—|—x3 (l)
dx kx dx 1—3z dx T
_1 __3 {product rule}
x 3r—1

=322Inz + 2>

=2?(3lnx +1)

In(kz) =Ink+Inz
= In & + constant
so In(kx) and In x

both have derlvatlve L
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The laws of logarithms can help us to differentiate some logarithmic functions more easily.
For ¢ >0, b>0, n€R: In(ab) =Ina+Inb
In (%) =Ina —1Inbd

In(a”) =nlna

Example 16 ) Self Tutor
Differentiate with respect to x:
2
— —Z = —IL'
a y=In(ze ™) b y=In [(x+2)(m_3)]
a y = In(ze™®)
=1 Ine™® In(ab) =1 Inb
netine { n(cl ) na+lnb} A derivative function
=hz—z {lne* =a} will only be valid on
dy 1 1 at most the domain of
dr =z the original function.
) | — A\
Ll NP o Sk
—Ine? -z +2)z—3)] {n (%) —Ina—Inb} g
=2Inz — [In(z + 2) + In(z — 3)] "?J
=2Inz —In(z + 2) — In(z — 3)
dy _ 2 1 1

dx T T+ 2 r—3

EXERCISE 13J

1 Find the gradient function of:

a y=In(7x) b y=In2x+1) ¢ y=In(z—2?)
d y=3—-2Inx e y=2’Inzx f y:lg_;

g y=e“lnx h y=(Inz)? i y=+vhaz

j y=e%Inzx k y=xln(2x) | y:%

m y=3—4In(1—2) n y=xln(z?+1)

2 Find dy for:
dx

a y=zInb b y=In(z?) ¢ y=In(a'+2)
d y=In(10 — 5z) e y=[n2z+1)° foy= In(4z)
€T
1 . 1
g y=1In (—) h y=In(lnxz) iy=—
T Inz
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3 Use the laws of logarithms to help differentiate with respect to x:

a y=Ihyv1l—-2z b y:n(2 13)
x

¢ y=In(e"/x) d y=In(zv2—12)
* v=n (1) Fo=in(5%)
g f(x) =In((30— 4°) h f(2) = In(e(z?+ 1))

i f(z)=In (“’ifix)

4 Find the gradient of the tangent to:

x4+ 2
2

a y=xlnx atthe point where =z =-¢ b y=In ( ) at the point where x = 1.

5 Suppose f(z)=aln(2z+0b) where f(e) =3 and f'(e) = 8. Find the constants a and b.
(&

UNCTIONS

In Chapter 9 we saw that sine and cosine curves arise naturally from motion in a circle. DEMO

Click on the icon to observe the motion of point P around the unit circle. Observe the graphs /J}r\
of P’s height relative to the z-axis, and then P’s horizontal displacement from the y-axis. The ’@
resulting graphs are those of y =sint and y = cost. N A\L

Discovery 9 Derivatives of sinx and cosx

Our aim is to use a computer demonstration to investigate the derivatives of sinx and coszx.

What to do:

. . . i DERIVATIVES
1 Click on the icon to observe the graph of y = sinz. A tangent with z-step of length DEMO
1 unit moves across the curve, and its y-step is translated onto the gradient graph. /WF J
Predict the derivative of the function y = sinz. w’(@

2 Repeat the process in 1 for the graph of y = cosz. Hence predict the derivative of
the function y = coszx.

From the Discovery you should have deduced that:

For z in radians:  If f(z) =sinz then f'(z)= cosz.
If f(z)=cosz then f'(z)= —sinz.
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THE DERIVATIVE OF tanx

Consider

We let

sinx
y =tanx =
cos T
uw=sinz and v =cosx
du dv .
— =cosx and — = —sinx
dx dx
d u'v —uw' .
&= — {quotient rule}
dx v

cosx cos — sinx(— sinx)

[cos ]2
cos2 x + sin? - X "
=—F Function | Derivative
CcOos“ T
1 ) oy ) sin x cos T
= {since sin“z + cos”z =1} .
cos? coSx —sinx
2
=sec”x tanx sec?

DERIVATIVE
DEMO

-

b

THE DERIVATIVES OF sin[f ()], cos[f(z)], AND tan[f(z)]

Suppose
If we let

But

y = sin[f(2)]

u= f(x), then y =sinu.
dy _ dy du {chain rule}
dx du dx

j—z =cosu X f'(z)

= cos[f(z)] x f'(z)

We can perform the same procedure for cos[f(z)] and tan[f(z)], giving the following results:

Derivative

cos(f ()] f(x)
—sin[f(z)] f'(z)
sec?[f(x)f'(x)

o) Self Tutor

Function
sin[f ()]
cos[f(z)]
tan(f ()]
Example 17
Differentiate with respect to z:
a zsinx
a If y=xsinz
then by the product rule
dy _ (1)sinz + (z) cosx
dx

=sinx + rcosx

b 4tan?(3z)

b If y=4tan®(3x)

= 4[tan(3x)]?

= 4u* where u = tan(3z)
dy _ dy du {chain rule}
dx du dz
4y = 8u x du
dx dx

= 8tan(3z) x 3sec’(3z)
= 24 sin(3x) sec® (3x)
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EXERCISE 13K

1 Find dy for:
dx

a y=sin(2x) b y=sinz+cosz ¢ y=cos(3z) —sinzx

d y=sin(z+1) e y=cos(3—2x) f y=tan(5z)

g y=sin(5) —3cosz h y=3tan(nz) i y=4sinz — cos(2z)
2 Differentiate with respect to x:

a 2% +cosw b tanz —3sinx ¢ e’cosz d e *sinzx

e In(sinz) f e*tanz g sin(3z) h cos(%)

i 3tan(2x) j zcosz Kk ST I ztanx

3 Differentiate with respect to x:

a sin(z?) b cos(y/z) ¢ .Jcosw d sin’z
e cos’w f cosxsin(2x) g cos(cosz) h cos?(4x)
I 1 - 1 Kk 2 I 8
sinx cos(2x) sin?(2x) tan?’(%)

4 Find the gradient of the tangent to:

a f(z) =sin’z at the point where z = 2F

b f(xz) =cosxzsinz at the point where x = 7.

'SECOND DERIVATIVES

Given a function f(x), the derivative f’(z) is known as the first derivative.

The second derivative of f(z) is the derivative of f’(x), or the derivative of the first derivative.

2

We use f” or y’ or —=
f(z) ory e

to represent the second derivative.

f"(x) reads “f double dashed .

2
4y d (Z—y> reads “dee two y by dee x squared”.
X

m:daj

Example 18 %) Self Tutor

Find f(z) giventhat f(z)=a%— 2.
T

Now f(z) =% —3z7!
f'(x) = 32% + 3272
() = 6z — 6273

6
= 06r — —
3
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EXERCISE 13L
1 Find f”(x) given that:

a f(r)=32%—6x+2 b f(ac):%—l ¢ f(z)=223-322—-2+5
x
2—3 +2
d flz)="5" e f(z)=(1-22)° fflo)=——
T 2r — 1
2
2 Find d—g given that:
dx
.3 _ .25 _9_ 3
a y=zr—=x b y==2 = c y NG
d y:4_m e y=(z?-32) f y=22—-o+ !
T 1—=x
3 Given f(z)=a3—2z+5, find:
a f(2) b f(2) c Q2
4 Suppose y = Ae*® where A and k are constants. Show that:
dy _ Py _ o
do ky de? Ry
5 Find the value(s) of = such that f”(z) =0, given:
a f(z)=22°—-622+5x+1 b f(:c):2L
4+ 2
6 Consider the function f(x) = 22% — z. " 11 o 1
Complete the following table by indicating whether f(x), f/(z),
. ) ‘ flx) | -
and f”(x) are positive (+), negative (—), or zero (0) at the given -
values of z. f(z)
/()
7 Suppose f(z)=2sin®z — 3sinz.
a Show that f’(z) = —3cosz cos2z. b Find f"(z).
. d?y . .
8 Find —o3 givem:
a y=—-Inx b y=zlnz ¢ y=(lnz)?
9 Given f(x)=22>—-=, find
a f(1) b f(1) c (1)
2
10 If y =265 +5¢4e, show that Y — 7% {19y —o0.
dx? dx
. d2y
11 If y=sin(2x +3), show that 2 +4y =0.
XL
d2y

12 If y=2sinxz + 3cosz, showthat gy’ +y =0 where ¢y’ represents ol
X
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Review set 13A

1 Evaluate:
. . 2h%2—h . 2_1
a lim (6z —7) b lim ¢ lim Z 6
z—1 h—0 h r—4 x—4

2 Find, from first principles, the derivative of:
a f(r)=2%+2x b y=4- 322

3 In the Opening Problem on page 334, the altitude of the jumper is given by
f(t) = 452 — 4.8t% metres, where 0 <t < 3 seconds.

a Find f/(t) = lim w

b Hence find the speed of the jumper when t = 2 seconds.

4 If f(z)=7+z— 322 find: a f(3) b f'(3) c f(3).
.o dy : 2 _ 4 b —a
5 Find — for: a y=3z°—=z b y=—
dx 4
6 At what point on the curve f(z) = \/Z_ does the tangent have gradient 1?
e+ 1
7 Find ¥ i a y=et2 b yzln(“?’)
dx 2
. z =z d%y
8 Given y=3e” —e ”, show that — =y.
dx
9 Differentiate with respect to x:
a 5r—3z7! b (322 +x)* c (z2+1)(1—2%)3

10 Find all points on the curve y = 223 + 322 — 10z + 3 where the gradient of the tangent is 2.

dy d?y
11 If y=+/5—4z, find: a — b —
dx dx?

12 Differentiate with respect to x:
a sin(5z)In(z) b sin(z) cos(2z) ¢ e tanx

2

13 Find the gradient of the tangent to y = sin” x at the point where = = %.

14 Find the derivative with respect to x of:

a f(z)=(22+3)* b g(z)= Z;s
15 Find f”(2) for:
a f(z)=32> -~ b f(z) =z

16 Differentiate with respect to x:

a 10z — sin(10z) b ln( ! ) ¢ sin(5z)In(2z)

COS T
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Review set 13B

1 Evaluate the limits:
h3 —3h . 3z 32 . x> —3z+2

a lim b lim ¢ lim
h—0 h z—1 x—1 z—2 2—z

2 Given f(x)=>5z—2?% find f/(1) from first principles.

3 a Given y=2z2-1, find % from first principles.
X

b Hence state the gradient of the tangent to y = 2x2 — 1 at the point where z = 4.

¢ For what value of z is the gradient of the tangent to y = 222 —1 equal to —12?

2 _
4 Differentiate with respect to x: a y=23v/1—22 b y= gi/ﬁgf
2
5 Find%for: a y:3x4—§ b y:x3—x+\/i5

6 Find all points on the curve y = xe® where the gradient of the tangent is 2e.

T

3
7 Differentiate with respect to z: a f(z)=In(e®+3) b f(z)=1In [(x +2) ]
1\4 . dy
8 Suppose y = (x — —) . Find —= when z =1.
a8 dx

9 Find % if: a y=1In(z%— 32) b y=%
X

10 Find z if f"’(xz) =0 and f(z)=2z* — 423 — 922 + 42 + 7.
11 If f(x) =2 —cosz, find

a f(m) b f(3) c f
12 a Find f/(z) and f”(x) for f(z)= \/xcos(4x).

b Hence find f'({5) and f"(%).

)

)

2
13 Suppose y = 3sin2z + 2cos2z. Show that 4y + g—g =0.
X
14 Consider f(z)= 3_?—902. Find the value(s) of = when:
x
a f(z)=-3 b f(z)=0 ¢ f(z)=0

15 The function f is defined by f:z+— —10sin2zcos2z, 0< z < 7.
a Write down an expression for f(x) in the form ksind4x.

b Solve f’(xz)=0, giving exact answers.
16 Given that ¢ and b are constants, differentiate y = 3sinbz — acos2x with respect to z.

. . d2y
Find a and b if y+ —5 = 6cos2z.
dx?
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Opening problem

Michael rides up a hill and down the other side to his friend’s house. The dots on the graph show
Michael’s position at various times .

DEMO
t=0 t=>5 t=15 t=17 t=19
Michael’s place t=10 friend’s house 7,
The distance Michael has travelled at various times is given by the function
s(t) = 1.2¢3 — 30t? + 285t metres for 0 <t < 19 minutes.
“8 (m)
2500
2000
— 1963 202
1500 s(t) = 1.2t° — 30t* 4+ 285t
1000
500
S0 5 10 15 ¢ (min)
Y

Things to think about:

a Can you find a function for Michael’s speed at any time ¢?

b Michael’s acceleration is the rate at which his speed is
changing with respect to time. How can we interpret
s (t)?

¢ Can you find Michael’s speed and acceleration at the time
t = 15 minutes?

d At what point do you think the hill was steepest? How
far had Michael travelled to this point?

In the previous chapter we saw how to differentiate many types of functions.
In this chapter we will use derivatives to find:

e tangents and normals to curves
e turning points which are local minima and maxima.

We will then look at applying these techniques to real world problems including:
e kinematics (motion problems of displacement, velocity, and acceleration)

e rates of change

e optimisation (maxima and minima).
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'TANGENTS AND NORMALS

TANGENTS

The tangent to a curve at point A is the best approximating straight line to the curve at A.

In cases we have seen already, the tangent fouches the curve.
For example, consider tangents to a circle or a quadratic. Q/ v

However, we note that for some functions:

Points of inflection
are not required for
the syllabus.

e The tangent may intersect the curve again somewhere else.

e [t is possible for the tangent to pass through the curve at the point
of tangency. If this happens, we call it a point of inflection.

/ ~ point of inflection

Consider a curve y = f(x).

If A is the point with x-coordinate a, then the gradient of the

tangent to the curve at this point is f'(a) = m...
tangent

The equation of the tangent is gradient mr

y— fla) = f'(a)(z —a)

Example 1 ) Self Tutor

Find the equation of the tangent to f(z) = 2% + 1 at the point where z = 1.

by Since f(1) =1+ 1= 2, the point of contact is (1, 2).
Now f'(z) =2z, so m, =f'(1)=2
the tangent has equation y =2+ 2(z —1)

fl@)=2"+1
which is  y = 2z.
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NORMALS

A normal to a curve is a line which is perpendicular to the tangent at the point of contact.

The gradients of perpendicular lines are negative reciprocals of each other, so:

1
f'(a)”

The gradient of the normal to the curve at £ =a is m, = —

The equation of the normal to the curve at z =a is y = f(a) —

(xz — a).

1
f'(a)

Reminder: If a line has gradient % and passes through (2, —3), another quick way to write down its
equation is 4z — 5y = 4(2) — 5(—3) or 4z — 5y =23.

If the gradient was —32, we would have:

4z + 5y = 4(2) +5(—3) or 4z +5y=-T.
Example 2 ) Self Tutor
Find the equation of the normal to y = \/i_ at the point where x = 4.
€T
When z =14, y= % = S =4. So, the point of contact is (4, 4).
1 3
i Now as y =8z 2, W _ g3
dx
tangent normal .
1 7 = = — T2 = —l
aradient my gradient my when z =4, m, 4x4 2 5

the normal at (4, 4) has gradient m, = 2.

the equation of the normal is
0 > 2 — ly =2(4) — 1(4)
or 2z—y=4

EXERCISE 14A

1 Find the equation of the tangent to:

a y=x—22>+3 at x=2 b y=yz+1 at z=4
c y=23—-5r at x=1 d y:% at (1, 4)
x
e y:i iz at (—1, —4) f y:?)chfl at r = —1.
X x xX

2 Find the equation of the normal to:

a y =22 atthe point (3,9) b y=23-5z+2 at z=-2

c y:%— x at the point (1, 4) d ;1/:8\/_—96—12 at z =1
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10

11

12

Example 3 ) Self Tutor

Find the equations of any horizontal tangents to y = x> — 12z + 2.

Since y = 23 — 12z + 2, %:3:52—12
XL

Horizontal tangents have gradient 0, so 322 —12 =0

3(x? —4)=0
(z+2)(z—2)=0
. x=-—2o0r2

When z=2, y=8—-24+2=-14
When z=-2, y=-8+24+2=18

the points of contact are (2, —14) and (-2, 18)
the tangents are y = —14 and y = 18.

Find the equations of any horizontal tangents to y = 22 + 322 — 12z + 1.

. . . 1
Find the points of contact where horizontal tangents meet the curve y = 2\/x + —.

N
Find k if the tangent to y = 23 4 kx? — 3 at the point where z = 2 has gradient 4.

Find the equation of another tangent to y = 1 — 3z + 1222 — 82® which is parallel to the tangent
at (1, 2).

Consider the curve y = 2% 4+ az + b where a and b are constants. The tangent to this curve at the
point where = =1 is 2z +y = 6. Find the values of a and b.

Consider the curve y = a\/z + % where a and b are constants. The normal to this curve at the point
x

where = =4 is 4z + y = 22. Find the values of a and b.

Show that the equation of the tangent to y = 222 —1 at the point where = = a, is 4az—y = 2a®+1.

Find the equation of the tangent to:

a y=+v2xr+1 at z=4 b y:21 at x=—1
— X
¢ flo)= —" at (-1, -1 d fz) =2 at (2 —4)
1-3z »o Cl-z ’
Find the equation of the normal to
-t 1 - -
a y—(m2+1)2 at (1, ) b y — At 3
2 _
¢ f(z)=x(1—-2)? at z=4 d f(z)=2 Loat 2= 1.
2z + 3

Consider the curve y = a+/1 — bx where a and b are constants. The tangent to this curve at the point
where z = —1 is 3z 4y = 5. Find the values of a and b.
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Example 4 ) Self Tutor

Show that the equation of the tangent to y = Inz at the point where y = —1 is y =ex — 2.

When y=-1, Inzx=-1 Ly
Tr = 671 = %

the point of contact is (%, —1).

Now f(z) =Inz has derivative f'(x) =

the tangent at (%, —1) has gradient % =e
the tangent has equation y = —1+e(x — 1) v
whichis y =ex —2

13 Find the equation of:

a the tangentto f:z+— e atthe point where =z =1
b the tangentto y =In(2 — x) at the point where = = —1
¢ the normal to y =1In/z at the point where y = —1.

Example 5 w) Self Tutor

Find the equation of the tangent to y = tanz at the point where = = 7.

When z =7, y=tanf =1
the point of contact is (%, 1).

Now f(x) =tanz has derivative f'(z) = sec®x

the tangent at (%, 1) has gradient sec?Z = (1/2)? =2
the tangent has equation y =1+ 2(z — )
whichis y=2z+(1—-7%)

CoS X

14 Show that the curve with equation y = does not have any horizontal tangents.

1+sinz
15 Find the equation of:
a the tangent to y =sinx at the origin
b the tangentto y = tanz at the origin

¢ the normal to y = cosz at the point where = = %

d the normal to y =

at the point where = = 7.

1
sin(2x)
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Example 6 ) Self Tutor

Find where the tangent to y =3+ 2z +2 at (1, 4) meets the curve again.

Let f(z)=a+x+2
fl(x)y=32z>+1 and .. f(1)=3+1=4

(z — 1)? must be a
factor since we have

the equation of the tangent at (1, 4) is 4z —y =4(1) —4 i Gerapget o5 — I

or y=4x.

The curve meets the tangent again when 2 4z + 2 = 4z
C2® =3z +2=0
(x—1)*(x+2)=0
When z = -2, y=(-2)3+(-2)+2=-8

the tangent meets the curve again at (—2, —8).

3

16 a Find where the tangent to the curve y = z° at the point where = = 2, meets the curve again.

b Find where the tangent to the curve y = —x3 + 2% + 1 at the point where = = —1, meets the
curve again.

17 Consider the function f(z) = 2% + ;—2.

a Find f/'(z). b Find the values of = at which the tangent to the curve is horizontal.

¢ Show that the tangents at these points are the same line.

2

18 Thetangentto y = z“e” at x =1 cuts the x and y-axes at A and B respectively. Find the coordinates

of A and B.

Example 7 ) Self Tutor

Find the equations of the tangents to y = 2% from the external point (2, 3).

Let (a, a®) be a general point on f(z) = x2. Ay 5
y=x
Now f'(z) =2z, so f'(a) =2a
the equation of the tangent at (a, a?) is (2.3)
y = a® + 2a(z — a)
. . o 2
whichis y =2ax —a (0, 0?)
Thus the tangents which pass through (2, 3) satisfy -
3 =2a(2) — a? 0'/ g
a*—4a+3=0
(a—1)(a—3)=0
a=1or3

exactly two tangents pass through the external point (2, 3).
If a=1, the tangent has equation y = 2x — 1 with point of contact (1, 1).
If a =3, the tangent has equation y = 6z — 9 with point of contact (3, 9).
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19 a Find the equation of the tangent to y = 2> — 2+ 9 at the point where z = a.

b Hence, find the equations of the two tangents from (0, 0) to the curve. State the coordinates of
the points of contact.

20 Find the equations of the tangents to y = 2® from the external point (—2, 0).

21 Find the equation of the normal to y =/ from the external point (4, 0).
Hint: There is no normal at the point where x = 0, as this is the endpoint of the function.

22 Find the equation of the tangent to y = e® at the point where x = a.
Hence, find the equation of the tangent to y = e® which passes through the origin.

23 A quadratic of the form y = az?, a > 0,
touches the logarithmic function y = Inz as
shown.

a If the z-coordinate of the point of
contact is b, explain why ab® = Inb and

2ab = l
b

b Deduce that the point of contact is
(Ve 3)-

¢ Find the value of a.

d Find the equation of the common tangent.

If two curves fouch then
they share a common
tangent at that point.

24 Find, correct to 2 decimal places, the angle between the tangents to y = 3e™* and y =2 +¢e” at
their point of intersection.

25 Consider the cubic function f(z) = 2x3 + 52% — 4z — 3.
a Show that the equation of the tangent to the curve at the point where = = —1 can be written in
the form y =4 — 8(z + 1).
Show that f(z) can be written in the form f(z) =4 —8(z+1) — (z + 1)* + 2(z + 1)3.

¢ Hence explain why the tangent is the best approximating straight line to the curve at the point
where x = —1.

26 A cubic has three real roots. Prove that the tangent line at the average of any two roots of the cubic,
passes through the third root.

Hint: Let f(z) =a(z — a)(z - 8)(z — 7).
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|| [STATIONARY POINTS

A stationary point of a function is a point where f/(z) = 0.

It could be a local maximum, local minimum, or stationary inflection.

TURNING POINTS (MAXIMA AND MINIMA)

Consider the following graph Ay D(6,18)
which has a restricted domain
of =5 <z <6. y=f(z)
B(-2,4)
- = 2 .
h -2 o) : T
C(27 74)
A(_S’ - 16%) A\
dA is g global minimum as it has the minimum value of y on the entire Use of the words “local” and
oman. “global” is not required for

B is a local maximum as it is a turning point where f’(z) =0 and the the syllabus, but is useful for
curve has shape /\ ) understanding.

N

C is a local minimum as it is a turning point where f’(z) =0 and the
curve has shape \/ .

D is a global maximum as it is the maximum value of y on the entire
domain.

For many functions, a local maximum or minimum is also the global maximum or minimum.

For example, for y = 22 the point (0, 0) is a local minimum and is also the global minimum.

STATIONARY POINTS OF INFLECTION

It is not always true that whenever we find a value of « where f’(x) =0, we have a local maximum or
minimum.

For example, by — 3
5 , ) fle)=2 Points of inflection
f(z) =2° has f'(z) = 32", are not required for
so f'(x)=0 when z=0. the syllabus.
- 0 T

Y
The z-axis is a tangent to the curve which actually crosses over the curve
at O(0, 0). This tangent is horizontal, but O(0, 0) is neither a local
maximum nor a local minimum. It is called a stationary inflection as
the curve changes its curvature or shape.
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SIGN DIAGRAMS

A sign diagram is used to display the intervals on which a function is positive and negative.

In calculus we commonly use sign diagrams of the derivative function f’(x) so we can determine the nature
of a stationary point.

Consider the graph alongside. Ly
The sign diagram of its gradient function is local stationary y=[(z)
shown directly beneath it. maXimim inflection
We can use the sign diagram to describe the /TN 1 \
stationary points of the function. - D) O\‘/é T
The signs on the sign diagram of f/(z) \
indicate whether the gradient of y = f(x) i local minimum
is positive or negative in that interval.
: v :
DEMO ) 4 | _ | I o+ f:(m)
I~ A -2 1 3 T
| N\ local local stationary
§ maximum minimum  inflection
We observe the following properties:
Stationary point Sign diagram of f’(:z;) -
whae @) =0 nedr T —a Shape of curve near © = a
/ :
local maximum et 1 - 1@
a X r=a
!/
local minimum L m ]%(x) re
/! /
stationary inflection %(ﬂf) or 4;62;];3(%) : or ;
T=a TB=®@
Example 8 ) Self Tutor
Consider the function f(z) = z3 — 322 — 9z + 5.
a Find the y-intercept. b Find and classify all stationary points.
¢ Hence sketch the curve y = f(z).
a f(0) =5, so the y-intercept is 5.
b flx)=2% 322 -9z +5
f(x) =32 —62—9
=3(2? — 2z — 3) )
=3(z —3)(x+1) which has sign diagram: + ‘1 _\ :‘)) /+ f?r(:r)

/
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So, we have a local maximum at © = —1 and a local minimum at = = 3.
f(=1) = (=1 =3(=1)2 = 9(-1) + 5= 10
f(3)=3"—-3x32-9x3+5=-22

there is a local maximum at (—1, 10) and a local minimum at (3, —22).

c \y

(—1,10) y=a>—322 -9 +5

5
- 0 =ZC
v (3,-22)
Example 9 ) Self Tutor
. . . . x2 +1
Find and classify all stationary points of f(z) = .
T

. z2 +1
- We need to include points
2 where f(z) is undefined as critical
f(z) = 22(@) xéx +1) values of the sign diagram.
- z2 -1
=—
_ @+l -1)
xX
: B /
f'(x) has sign diagram: < \\yf + 0 \\1// + fin(a:)

So, we have local minima when x = +£1.

1241
1

2

G _
f(—l)—T—— and f(1) =

there are local minima at (—1, —2) and (1, 2).

SECOND DERIVATIVES AND STATIONARY POINTS

The second derivative of a function can be used to determine the nature of its stationary points.

For a function f(z) with a stationary point at x = a:
o If f”’(a)>0, then it is a local minimum.
e If f”’(a) <0, then it is a local maximum.

e If f”’(a)=0, then it could be a local maximum, a local minimum, or a stationary inflection
point.
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Example 10 %) Self Tutor

Find and classify all stationary points of f(z) = 223 + 322 — 12.

fz) =223 + 322 — 12
f(x) = 62% + 6z

=6z(x+1)
f(x)=0 when 6z=0 or z+1=0
.~ x=0 or z=—1
Also, f"(z)=12x+6
£(0) = 12(0) +

0)+6=6 whichis >0
1

(
and f"(—1) =12(-1)+6 = —6 whichis <0

So, we have a local minimum at x = 0 and a local maximum at = = —1.

Now f(0) =2(0)% +3(0)2 —12 = —12
f(=1) =2(-1)*+3(-1)? =12 = —11

there is a local minimum at (0, —12) and a local maximum at (—1, —11).

EXERCISE 14B

1 The tangents at points A, B, and C are horizontal. Ay
. : A(=2.8) y=f(z)
a Classify points A, B, and C.
b Draw a sign diagram for:
- S 4 B 5/
i f(@) i f() . N .
v C(3,-11)

2 For each of the following functions, find and classify any stationary points. Sketch the function, showing
all important features.

a f(z)=22-2 b f(z)=2%+1 GRAPHING
¢ flz)=a3-3x+2 d f(z)=z*—222 PACKAGE
e f(r)=a2%—622+120 -7 f flz)=yzr+2 #: :A
g fla)=oz—x h f(z)=2*—-62%+8r—-3 K
i flx)=1—zyx j flx)=a2—22%-38

3 At what value of z does the quadratic function f(z) = ax®+bzx+c, a # 0, have a stationary point?
Under what conditions is the stationary point a local maximum or a local minimum?

4 f(z)=22>+ax®— 24z +1 has a local maximum at x = —4. Find a.
f(x) = 2% +azx + b has a stationary point at (—2, 3).

a Find the values of a and b.
b Find the position and nature of all stationary points.
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Example 11 «) Self Tutor

Find the exact position and nature of the stationary point of y = (z — 2)e™*.

dy _ (De™™ 4+ (x — 2)e™*(-1) {product rule}

dx
=e (11— (z-2)
=3 _zx where e® is positive for all To determine the nature
€ of a stationary point, we
So, W _ 0 when = = 3. can use a sign diagram or
dx dy the second derivative.

. . dy . + - =
The sign diagram of —Z is: 47@?&’””
& & dx 3 T \
=S
at x =3 we have a local maximum. v’
1

But when =3, y= (1)6*3 - —

e3 7

o=,

: . 1
the local maximum is at (3, —).
€

6 Find the position and nature of the stationary point(s) of:
e(E

a y=ze” b y=2%" c y=— d y=e " (z+2)
x

7 Consider f(z)=zlna.

a For what values of = is f(x) defined? b Show that the global minimum value of f(z) is .y
€

8 Find the greatest and least value of:
a 28-120-2 for —-3<z<5 b 4-32>+2% for —2<2<3

9 The cubic polynomial P(z) = ax® + bz? + cx +d touches the line with equation y = 9x + 2 at the
point (0, 2), and has a stationary point at (—1, —7). Find P(x).

Example 12 ) Self Tutor

Find the greatest and least value of y = 23 — 622 +5 on the interval —2 < x < 5.

Now ¥ —3:2 12
dx
dy - 3:5(317 - 4) If the domain is restricted,
= 0 when =0 or 4 we need to check the value
dy of the function at the
The sign diagram of Woje m 7\ ‘ / R endpoints of the domain.
dx 0 4 T
there is a local maximum at x = 0, Critical value (z) | f(x)
and a local minimum at = = 4. —2 (endpoint) —o7
The greatest of these values is 5 when 0 (local max) 5
z=0. 4 (local min) | —27
The least of these values is —27 when 5 (endpoint) —920
x = —2 and when z =4. 4
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10 For each of the following, determine the position and nature of the stationary points on ~ GRAPHING

the interval 0 < z < 27, then show them on a graph of the function. PAC%AGE
a f(z)=sinz b f(x) = cos(2z) c f(x)=sin’z =,«‘
d f(z)=esin® e f(x)=sin(2z)+2cosz %K
11 Show that y = 4e™“sinx has a local maximum when = = 7.
Inx 1 . Inx .
12 Prove that — < - forall z > 0. Hint: Let f(z) = — and find its greatest value.
x e x

13 Consider the function f(z) =z —Inz.
a Show that the graph of y = f(z) has a local minimum and that this is the only turning point.
b Hence prove that Inz < x —1 forall = > 0.

" [KINEMATICS

In the Opening Problem we are dealing with the movement of Michael riding his bicycle. We do not know
the direction Michael is travelling, so we talk simply about the distance he has travelled and his speed.

For problems of motion in a straight line, we can include the direction the object is travelling along the
line. We therefore can talk about displacement and velocity.

DISPLACEMENT

Suppose an object P moves along a straight line so that its position s from

an origin O is given as some function of time ¢t. We write s = s(t) r—s(t)—1

where ¢t > 0. = 0 P >
origin

s(t) is a displacement function and for any value of ¢ it gives the displacement from O.

s(t) is a vector quantity. Its magnitude is the distance from O, and its sign indicates the direction from O.
For example, consider s(t) =t + 2t — 3 cm.

s(0) =—=3cm, s(1)=0cm, s(2)=5cm, s(3) =12 cm, s(4) =21 cm.

To appreciate the motion of P we draw a motion graph. You can also view the motion by clicking on the

icon.
DEMO

Y

o
Il ce—

=
o

L
—
ot
|
S

L
o |
S

\
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VELOCITY

The average velocity of an object moving in a straight line in the time interval from ¢t =1¢; to t =t
is the ratio of the change in displacement to the time taken.

s(t2) — S(tl).

If s(¢) is the displacement function then average velocity = 7 .
2 — U

On a graph of s(¢) against ¢ for the time interval from ¢ = ¢; to t = to, the average velocity is the
gradient of a chord through the points (¢, s(t1)) and (2, s(t2)).

In Chapter 13 we established that the instantaneous rate of change of a quantity is given by its derivative.

If s(¢) is the displacement function of an object moving in a straight line, then
s(t+ h) — s(?)
h
velocity function of the object at time ¢.

v(t) = s'(t) = lim is the instantaneous velocity or
h—0

On a graph of s(t) against ¢, the instantaneous velocity at a particular time is the gradient of the tangent
to the graph at that point.

ACCELERATION

If an object moves in a straight line with velocity function wv(t) then:

e the average acceleration for the time interval from ¢ =1¢; to ¢t =ty is the ratio of the change in
velocity to the time taken
v(t2) — v(t1)

average acceleration =
ta —

v(t+ h) — 'v(t).

o the instantaneous acceleration at time ¢ is a(t) = v'(t) = ’lir% h

UNITS

Each time we differentiate with respect to time ¢, we calculate a rate per unit of time. So, for a displacement
in metres and time in seconds:

1 2

e the units of velocity are ms™ e the units of acceleration are ms™~.

Discussion

e What is the relationship between the displacement function s(¢) and the acceleration function
a(t)?

e How are the units of velocity and acceleration related to their formulae? You may wish to research
“dimensional analysis”.
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Example 13 ) Self Tutor

A particle moves in a straight line with displacement from O given by s(t) = 3t — t?> metres at
time ¢ seconds. Find:

a the average velocity for the time interval from ¢ =2 to t =5 seconds
b the average velocity for the time interval from ¢ =2 to ¢ =2+ h seconds
i SCHR) —s(2)

c lim : and comment on its significance.
a average velocity b average velocity
_s(5) —s(2) _s(24+h) —s(2)
52  2+h-2
_ (15-25)— (6 —4) _32+h)—(2+h)2 -2
3 N h
_ —10-2 _ 6+3h—4—4h—h%2—2
3 B h
= 4 ms! —h—h2
- h
=—1—h ms™* provided h#0
c lim s(24+h) —s(2)
h—0 h
= }lLir% (—1—nh) {since h # 0}
= —1ms!

This is the instantaneous velocity of the particle at time ¢ =2 seconds.

EXERCISE 14C.1

1 A particle P moves in a straight line with displacement function s(t) = t? + 3t — 2 metres, where
t >0, tin seconds.

a Find the average velocity from ¢ =1 to ¢t =3 seconds.
b Find the average velocity from ¢t =1 to ¢t =1+ h seconds.

¢ Find the value of lim sA+h) —s)

and comment on its significance.
h—0 h

d Find the average velocity from time ¢ to time ¢+ h seconds and interpret }llin% w

2 A particle P moves in a straight line with displacement function s(t) =5 — 2t c¢m, where t > 0,
t in seconds.
a Find the average velocity from ¢ =2 to ¢t =5 seconds.
b Find the average velocity from ¢t =2 to ¢t =2+ h seconds.

¢ Find the value of lim %}1_8(2)

h—0

s(t+ h) — s(t)
—

and state the meaning of this value.

(-}

Interpret lim
P h—0
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3 A particle moves in a straight line with velocity function wv(t) =2v/%+3 cms™!, ¢ > 0.

a
b

(4

d

Find the average acceleration from ¢ =1 to t =4 seconds.

Find the average acceleration from ¢ =1 to ¢ =1+ h seconds.

Find the value of

Interpret lim
P h—0

h—0 h
v(t+ h) —v(t)

lim w Interpret this value.

h

4 An object moves in a straight line with displacement function s(¢) and velocity function v(t), ¢ > 0.
State the meaning of:

lim s(4+ h) — s(4)
h—0 h

b lim v(4+4 h) —v(4)
h—0 h

VELOCITY AND ACCELERATION FUNCTIONS

If a particle P moves in a straight line and its position is given by the displacement function s(t), ¢

then:
e the velocity of P at time ¢ is given by v(t) = s (t)
e the acceleration of P at time ¢ is given by a(t) = v'(t) = s”(t)
e 5(0), v(0), and a(0) give us the position, velocity, and acceleration of the
particle at time ¢ =0, and these are called the initial conditions.
SIGN INTERPRETATION

20’

Suppose a particle P moves in a straight line with displacement function s(¢) relative to an origin O. Its
velocity function is v(¢) and its acceleration function is a(t).

We can use sign diagrams to interpret:

e where the particle is located relative to O

e the direction of motion and where a change of direction occurs

e when the particle’s velocity is increasing or decreasing.

SIGNS OF s(t):

SIGNS OF v(t):

s(t) Interpretation v(t) Interpretation
=0 |PisatO =0 | P is instantaneously at rest
> 0 | P is located to the right of O >0 | P is moving to the right
< 0 | P is located to the left of O <0 | P is moving to the left
SIGNS OF a(t): a(t) Interpretation
> 0 | velocity is increasing

<0

velocity is decreasing

velocity may be a maximum or minimum or possibly constant
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ZEROS:
Phrase used in a question t S v a
initial conditions 0
at the origin 0
stationary When a particle reverses
reverses 0 directionf its velocity must
maximum or minimum displacement 0 chgnge SIEN.
This corresponds to a local
constant velocity maximum or local minimum
maximum or minimum velocity distance from the origin O.

SPEED

As we have seen, velocities have size (magnitude) and sign (direction). In contrast, speed simply measures
how fast something is travelling, regardless of the direction of travel. Speed is a scalar quantity which has
size but no sign. Speed cannot be negative.

The speed at any instant is the magnitude of the object’s velocity. Be careful not to

If S(t) represents speed then S = |v].

To determine when the speed S(t) of an

increasing or decreasing, we use a sign test.

o If the signs of v(¢) and a(t) are the same (both positive or both
negative), then the speed of P is increasing.

o If the signs of v(¢) and a(t) are opposite, then the speed of P is

decreasing.

Discovery

confuse speed S(t)
with displacement s(t).

object P with displacement s(t) is

Displacement, velocity, and acceleration graphs

In this Discovery we examine the motion of a projectile which is fired in a vertical MOTION

direction. The projectile is affected by
constant acceleration.

gravity, which is responsible for the projectile’s DEMO

~ B

We then extend the Discovery to consider other cases of motion in a straight line. ¢ E

What to do:

1 Click on the icon to examine vertical projectile motion.
Observe first the displacement along the line, then look at the velocity which is the rate of change
in displacement. When is the velocity positive and when is it negative?

2 Examine the following graphs and

e displacement v time

comment on their shapes:

e velocity v time e acceleration v time

3 Pick from the menu or construct functions of your own choosing to investigate the relationship
between displacement, velocity, and acceleration.
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Example 14 ) Self Tutor

A particle moves in a straight line with position relative to O given by s(t) = t3 —3t+1 ¢cm, where
t is the time in seconds, t > 0.

0o = O 2 O T

Find expressions for the particle’s velocity and acceleration, and draw sign diagrams for each of
them.

Find the initial conditions and hence describe the motion at this instant.
Describe the motion of the particle at ¢ = 2 seconds.

Find the position of the particle when the changes in direction occur.

Draw a motion diagram for the particle.

For what time interval is the particle’s speed increasing?

What is the total distance travelled in the time from ¢t =0 to ¢ =2 seconds?

s(t)=t>—3t+1cm
v(t) =3t> -3 {as v(t) =s'(t)} Since ¢t > 0, the
— 3(t2 —1) stationary point at
—3(t+1)(t—1) ems—! t = —1 is not required.
which has sign diagram: - |+ v=(t) \
1 t
0
and a(t) =6t cms™?2 {as a(t) =7'(t)}
which has sign diagram: + a(t)
t
0
When ¢ =0, s(0

)=1cm
v(0) = —3 cms™!
a(0) =0 cms™?
the particle is 1
When t =2, s(2)=8-6+1=3cm

v(2)=12-3=9cms™ !
a(2) =12 cms ™2
the particle is 3 cm to the right of O, moving to the right at a speed of 9 cms™*.
Since a and v have the same sign, the speed of the particle is increasing.

cm to the right of O, moving to the left at a speed of 3 cms™1.

Since v(t) changes sign when ¢ =1, a change of direction occurs at this instant.
s(1)=1—-3+1= -1, so the particle changes direction when it is 1 cm to the left of O.

t=2
position * . 1 1 t=— 0 > The motion is
- — | L, actually on the line,
-1 0 1 2 3 not above it as shown.
origin \ /

Speed is increasing when v(t) and a(t) M

have the same sign. This is for ¢ > 1.
Total distance travelled = 2 +4 = 6 cm.
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In later chapters on integral calculus we will see another technique for finding the distances travelled and
displacement over time.

EXERCISE 14C.2

1 An object moves in a straight line with position given by s(t) =2 —4t+3 cm from O, where t is
in seconds, t > 0.

- 0 2 0 T

Find expressions for the object’s velocity and acceleration, and draw sign diagrams for each
function.

Find the initial conditions and explain what is happening to the object at that instant.
Describe the motion of the object at time ¢ = 2 seconds.

At what time does the object reverse direction? Find the position of the object at this instant.
Draw a motion diagram for the object.

For what time intervals is the speed of the object decreasing?

2 A stone is projected vertically so that its position above ground level after ¢ seconds is given by
s(t) = 98t — 4.9t* metres, t > 0.

o 2 6 T 9

Find the velocity and acceleration functions for the stone, and draw sign diagrams for each function.
Find the initial position and velocity of the stone.

Describe the stone’s motion at times ¢t =5 and ¢ = 12 seconds.

Find the maximum height reached by the stone.

Find the time taken for the stone to hit the ground.

3 When a ball is thrown, its height above the ground is given by s(t) = 1.2 + 28.1t — 4.9t metres
where ¢ is the time in seconds.

g

4 The position of a particle moving along the z-axis is given by
z(t) = t3 — 9% + 24t metres where ¢ is in seconds, ¢ > 0.

b

(4

d

From what distance above the ground was the ball released?
Find s'(t) and state what it represents.

Find ¢ when s'(t) = 0. What is the significance of this result?
What is the maximum height reached by the ball?

Find the ball’s speed:

i when released il at t=2s ili at t=5s.
State the significance of the sign of the derivative s'(t).

How long will it take for the ball to hit the ground?
What is the significance of s (¢)?

When finding the total
distance travelled, always look
Draw sign diagrams for the particle’s velocity and for direction reversals first.
acceleration functions. \

Find the position of the particle at the times when it s
reverses direction, and hence draw a motion diagram for
the particle.

At what times is the particle’s: "?J
i speed decreasing ii velocity decreasing?
Find the total distance travelled by the particle in the first

5 seconds of motion.
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t

5 A particle P moves in a straight line with displacement function s(¢) = 100t 4+ 200e ° cm, where
t is the time in seconds, ¢ > 0.

b
c
d

Find the velocity and acceleration functions.

Find the initial position, velocity, and acceleration of P.
Sketch the graph of the velocity function.

Find when the velocity of P is 80 cm per second.

6 A particle P moves along the z-axis with position given by x(t) = 1 — 2cost cm where ¢ is the
time in seconds.

a
b

c

State the initial position, velocity, and acceleration of P.

Describe the motion when ¢t = % seconds.

Find the times when the particle reverses direction on 0 < ¢ < 27, and find the position of the

particle at these instants.
When is the particle’s speed increasing on 0 < ¢ < 27?7

7 Inan experiment, an object is fired vertically from the earth’s surface. b s(t)
From the results, a two-dimensional graph of the position s(t) metres
above the earth’s surface is plotted, where ¢ is the time in seconds.
It is noted that the graph is parabolic.
Assuming a constant gravitational acceleration g and an initial
velocity of ©(0), show that: *0 \ >
a o(t)=v(0)+gt b s(t) =v(0) x t+ $gt2. \
8 "l;lhe tapledalqngzide shows data from a driving test in Speed Thinking Braking
the Unlte. King om. (kmh~1) | distance (m) | distance (m)
A driver is travelling with constant speed. In response
to a red light they must first react and press the brake. 32 6 6
During this time the car travels a thinking distance. 48 9 14
Once the brake is applied, the car travels a further 64 12 24
braking distance before it comes to rest. 80 15 38
a Using the data from the driving test, find the 96 18 55
reaction time for the driver at 96 km h—1. 112 21 75
b The distance S(¢) travelled by an object moving

initially at speed u ms~—!

acceleration a ms™2, is S(t) = ut + 1at? m.

, subject to constant

i Differentiate this formula with respect to time.
ii Hence calculate the time taken for the object
to be at rest.
iii Using the data from the driving test, find
the braking acceleration for the driver at
96 kmh~1.

iv Show that in general, an object starting at
. . 1 u2

speed u comes to rest in a distance —Eu— m.

a

v If a driver doubles their speed, what happens
to their braking distance?
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/| [RATES OF CHANGE

There are countless examples in the real world where quantities vary with time, or with respect to some
other variable.

For example: e temperature varies continuously
e the height of a tree varies as it grows
e the prices of stocks and shares vary with each day’s trading.

We have already seen that if y = f(x) then f'(z) or 2_@;
X

the given point.

is the gradient of the tangent to y = f(z) at

d
d—y gives the rate of change in y with respect to x.
0

We can therefore use the derivative of a function to tell us the rate at which something is happening.

For example:

dH . . .
o - o H'(t) could be the instantaneous rate of ascent of a person in a Ferris wheel.

It might have units metres per second or ms—!.

dC . . .
o - or C'(t) could be a person’s instantaneous rate of change in lung capacity.

It might have units litres per second or Ls™1.

Example 15 %) Self Tutor

According to a psychologist, the ability of a person to understand spatial concepts is given by A = %\/Z
where ¢ is the age in years, 5 < ¢ < 18.
a Find the rate of improvement in ability to understand spatial concepts when a person is:
i 9 years old il 16 years old.

b Show that % >0 for 5<t< 18 Comment on the significance of this result.

d2A o .
¢ Show that el <0 for 5 <t<18. Comment on the significance of this result.
1 1,3
a A= g\/? = §t2
aa _ l{é -t
dt 6 61/t
- o dA . B dA
i When t=09, — 18 ii When ¢ =16, - —
the rate of improvement is .. the rate of improvement is
1—18 units per year for a 9 year old. i units per year for a 16 year old.

. . . 1 . .
Since /7 is never negative, 6_\/Z 1S never negative
dA

— >0 forall 5<t<18.
dt

This means that the ability to understand spatial concepts increases with age.
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ﬁ — lt_%

. 6
d2_A _Ltfg _ 1
dt2 12 T 12tv%
d?A

ﬁ<0 forall 5 <t<18.

This means that while the ability to understand spatial concepts increases with age, the rate of
increase slows down with age.

You are encouraged to use technology to graph each function you need to consider. GP';%PKAHISEG

This is often useful in interpreting results. l\‘
o2

EXERCISE 14D I

1 The estimated future profits of a small business are given by P(t) = 2t —12t+ 118 thousand dollars,
where ¢ is the time in years from now.

. . dP . .
a What is the current annual profit? b Find o and state its units.
. . dP
¢ Explain the significance of ot
d For what values of ¢ will the profit:
i decrease il increase on the previous year?
e What is the minimum profit and when does it occur?
. P
f Find (il_t when ¢t =4, 10, and 25. What do these figures represent?

2 The quantity of a chemical in human skin which is responsible for its ‘elasticity’ is given by
Q = 100 — 10/t where t is the age of a person in years.

a Find Q at:

i t=0 ii t=25 ifi ¢ =100 years.
b At what rate is the quantity of the chemical changing at the age of:

i 25 years il 50 years?

¢ Show that the quantity of the chemical is decreasing for all ¢ > 0.

3 The height of pinus radiata, grown in ideal conditions, is

given by H =20 — 1:91_55 metres, where ¢ is the number of

years after the tree was planted from an established seedling.
a How high was the tree at the time of its planting?
b Find the height of the tree after 4, 8, and 12 years.

¢ Find the rate at which the tree is growing after 0, 5, and
10 years.

d Show that Z—Ij >0 forall ¢>0.

What is the significance of this result?
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Example 16 %) Self Tutor

The cost in dollars of producing x items in a factory each day is given by
_ 3 2
C(z) = 0.00013z° + 0.002z° + 5z + 2200

labour raw materials fixed costs

a Find C’(z), which is called the marginal cost function.
Find the marginal cost when 150 items are produced. Interpret this result.
¢ Find C(151) — C(150). Compare this with the answer in b.

a The marginal cost function is
C'(x) = 0.00039x2 4 0.004z + 5 dollars per item. chord

b C’(150) = $14.38 (canswer)

N

This is the rate at which the costs are increasing with
respect to the production level x when 150 items are tangent
made per day. (b answer)
It gives an estimate of the cost of making the 151st item :
each day. S5 —— b C(150)
c C(151) — C(150) ~ $3448.19 — $3433.75 150 151
~ $14.44

This is the actual cost of making the 151st item each day, so the answer in b gives a good
estimate.

4 Secablue make denim jeans. The cost model for making
x pairs per day is

C(x) = 0.0003z3 + 0.022% + 4x + 2250 dollars.

Find the marginal cost function C’(x).

Find C’(220). What does it estimate?

Find C(221) — C(220). What does this represent?

Find C”(z) and the value of  when C”(x) = 0.
What is the significance of this point?

a o T 9

5 The total cost of running a train from Paris to Marseille is
. 2 .
given by C(v) = 10? + 20009 oiros  where o s the
v

average speed of the train in kmh~1.
a Find the total cost of the journey if the average speed is:
i 50 kmh™! il 100 kmh~1
b Find the rate of change in the cost of running the train
at speeds of:

i 30 kmh™! ii 90 kmh'.
¢ At what speed will the cost be a minimum?
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6 A tank contains 50000 litres of water. The tap is left fully
on and all the water drains from the tank in 80 minutes. The
volume of water remaining in the tank after ¢ minutes is given

2
by V = 50000 (1 - %) littes where 0 < ¢ < 80.

a Find % and draw the graph of % against t.

b At what time was the outflow fastest?
2

d . ..
¢ Show that dT‘; is always constant and positive.

Interpret this result.

7 y o Alongside is a land and sea profile where the x-axis is

sea hill lake sea level. The function y = La(z —2)(z — 3) km

J | gives the height of the land or sea bed relative to sea
-

level at distance x km from the shore line.

8Y

a Find where the lake is located relative to the shore
line of the sea.

. d . .
b Find d_y and interpret its value when z = § km and when z =11 km.
X

¢ Find the deepest point of the lake, and the depth at this point.

8 A radioactive substance decays according to the formula W = 20e~** grams where ¢ is the time in
hours.

a Find £ given that after 50 hours the weight is 10 grams.
b Find the weight of radioactive substance present:
i initially ii after 24 hours ifi after 1 week.

(7]

How long will it take for the weight to reach 1 gram?
d Find the rate of radioactive decay at: i t =100 hours ii ¢ = 1000 hours.

aw . . . ..
e Show that — s proportional to the weight of substance remaining.

9 The temperature of a liquid after being placed in a refrigerator is given by T = 5+ 95¢~** °C where
k is a positive constant and ¢ is the time in minutes.

a Find £k if the temperature of the liquid is 20°C after 15 minutes.
b What was the temperature of the liquid when it was first placed in the refrigerator?

¢ Show that (Z—f =¢(T —5) for some constant c. Find the value of c.

d At what rate is the temperature changing at:
i t=0 mins ii ¢t =10 mins ifi ¢ =20 mins?

10 The height of a shrub ¢ years after it is planted is given by H(t) = 20In(3t +2) +30 cm, ¢ > 0.
a How high was the shrub when it was planted?
b How long will it take for the shrub to reach a height of 1 m?
¢ At what rate is the shrub’s height changing:
i 3 years after being planted il 10 years after being planted?
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11 In the conversion of sugar solution to alcohol, the chemical reaction obeys the law A = s(1 — e~ %),
t > 0 where ¢ is the number of hours after the reaction commences, s is the original sugar
concentration (%), and A is the alcohol produced, in litres.

a Find A when t =0.
b Suppose s =10 and A =5 after 3 hours.

i Find k. ii Find the speed of the reaction at time 5 hours.
¢ Show that the speed of the reaction is proportional to A — s.

Example 17 ) Self Tutor
Find the rate of change in the area of B
triangle ABC as 6 changes, at the time 12em
when 0 = 60°. 0 must be in
A 5
radians so the
0om dimensions
C are correct.

Area A =1 x10x12 x sin6 {Area = bcsin A}
A=60sinf cm?

A _ 60 cos 6
df
_ T _ 1
When 6 =%, cost =3
dA 2 .
i 30 cm” per radian
12 Find the rate of change in the area of triangle PQR as 6 changes, at Q

the time when 6 = 45°.

7cm

R

13 On the Indonesian coast, the depth of water at time t hours after midnight is given by
d =9.3+6.8cos(0.507¢) metres.
a Find the rate of change in the depth of water at 8:00 am.
b Is the tide rising or falling at this time?

14 A piston is operated by rod [AP] attached to a Ay
flywheel of radius 1 m. AP = 2 m. P has piston P(cost,sint)
coordinates (cost, sint) and point A is (—z, 0). :

a Show that z = /4 —sin®t — cost.

b Find the rate at which = is changing at the
instant when:

i t=0 iiot=1 i =20

b \wo

\j
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There are many problems for which we need to find the maximum or minimum value of a function.
The solution is often referred to as the optimum solution and the process is called optimisation.

The maximum or minimum value does not always occur when the first derivative is zero.

It is essential to also examine the values of the function at the endpoint(s) of the interval under consideration
for global maxima and minima.

For example: dy
==

0
The maximum value of y occurs at the
endpoint = = b.

The minimum value of y occurs at the
local minimum x = p.

OPTIMISATION PROBLEM SOLVING METHOD

Step I: Draw a large, clear diagram of the situation.

Step 2:  Construct a formula with the variable to be optimised as the subject. It should be written
in terms of one convenient variable, for example z. You should write down what domain
restrictions there are on z.

Step 3: Find the first derivative and find the values of = which make the first derivative zero.

Step 4:  For each stationary point, use a sign diagram to determine if you have a local maximum or
local minimum.

Step 5:  Identify the optimum solution, also considering endpoints where appropriate.

Step 6:  Write your answer in a sentence, making sure you specifically answer the question.

Example 18 %) Self Tutor

A rectangular cake dish is made by cutting out squares
from the corners of a 25 cm by 40 cm rectangle of
tin-plate, and then folding the metal to form the container.

What size squares must be cut out to produce the cake
dish of maximum volume?

Step 1: Let x cm be the side lengths of the

squares that are cut out.
Step 2:  Volume = length x width x depth i i (25— 22)em
= (40 — 22)(25 — 2z)z L N
2 o =
= (1000 — 80z — 50z + 4z2)x pom! ™
= 1000z — 1302” + 42° cm® T """ - N
Since the side lengths must be positive, (40 — 2z) em

x>0 and 25—2x > 0.
0<z<125
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Step 3: Z—V — 1222 — 2602 + 1000
X
= 4(32% — 652 + 250)
= 4(3z — 50)(z — 5)
av 50 2
— =0 when z=3% =165 or z=5
dx
Step 4: Z—V has sign diagram: | + /\5\ —
X
o PN

|
2.5

DEMO

[ 7N
| N

Step 5:  There is a local maximum when z = 5. This is the global maximum for the given domain.

Step 6:  The maximum volume is obtained when x = 5, which is when 5 cm squares are cut

from the corners.

Example 19

w) Self Tutor

A 4 litre container must have a square base, vertical sides,
and an open top. Find the most economical shape which
minimises the surface area of material needed.

open

Step I:

Step 2:

Step 3:

Step 4:

Let the base lengths be  cm and the depth be y cm.

YM " The volume V = length x width x depth
V =22y
T cm
4000 = 2%y ... (1) {1 litre = 1000 cm?®}
T cm
The total surface area A = area of base + 4(area of one side)

= 2% +4xy
4000 .
— 22 4+ 4z <w—2) {using (1)}
A(z) = 2° + 16000z~ where z >0

A'(x) = 2z — 16 000z 2

A'(x) =0 when 2x= 16;;00

223 = 16 000

.z = /8000 = 20

A'(z) has sign diagram: | _\ ‘ /‘+ A(x)
| r \20/ +
y \20/
If z=10, If z =30,
A'(10) = 20 — 18580 A'(30) = 60 — L3580
=20 — 160 ~60—17.8

= —140 ~42.2
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4000

Step 5: The minimum material is used to make the container when =z =20 and y = oz = 10.
Step 6:  The most economical shape has a square base
20 em x 20 cm, and height 10 cm. 10cm
20cm
20cm
Example 20 w) Self Tutor
Two corridors meet at right angles and are 2 m and 3 m wide B
respectively. 6 is the angle marked on the given figure. [AB] | T
is a thin metal tube which must be kept horizontal and cannot 2m
be bent as it moves around the corner from one corridor to the A
other.
a Show that the length AB is given by L = 3 ,2 .
cosf  sinf
A
b Show that % =0 when 0= tan—! (i/g) ~ 41.1°. «—3m
¢ Find L when 6 = tan! ( ¢ %) and comment on the significance of this value.
a cosf= 3 and sinf = % | B DEMO
a H
b 2
2
— — hwwé
cos 0 and b sin 6 - 'x
3
L — —
a+b cos 6 + sin 6
b L = 3[cos ]! + 2[sing] *
% = —3[cos 0] %(—sinf) — 2[sin ] "2 cos O
_ 3sinf _ 2cosf Thus %:0 when 3sin®0 = 2cos® 6

COS Sin
3 3 tan39:§
3sin” 0 — 2 cos” 0

- cos? fsin2 @ . tanf = i/g
6 =tan"! <§/§> ~ 41.1°

S

. . dL
f —:
¢ Sign diagram o =

s

When 60 = 30°, When = 60°,
4L~ 493 <0 ﬁ~906>0
db do

Thus, AB is minimised when 6 = 41.1°. At this time L ~ 7.02 metres. Ignoring the width of
the rod, the greatest length of rod able to be horizontally carried around the corner is 7.02 m.
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Use calculus techniques to answer the following problems. GRAPHING
PACKAGE

In cases where finding the zeros of the derivatives is difficult you may use the graphing

I
package to help you. g-f\i
EXERCISE 14E ’"

1 When a manufacturer makes x items per day, the cost function is C(z) = 720 + 4z + 0.022% dollars,
and the price function is p(z) = 15 — 0.0022 dollars per item. Find the production level that will
maximise profits.

2 A duck farmer wishes to build a rectangular enclosure of area
100 m2. The farmer must purchase wire netting for three of
the sides, as the fourth side is an existing fence. Naturally,
the farmer wishes to minimise the length (and therefore cost)
of fencing required to complete the job.

a If the shorter sides have length x m, show that the
required length of wire netting to be purchased is
L =2z + @.
x
b Find the minimum value of L and the corresponding
value of  when this occurs.

¢ Sketch the optimum situation, showing all dimensions.

3 The total cost of producing = blankets per day is ixz + 8x 4+ 20 dollars, and for this production level
each blanket may be sold for (23 — 1z) dollars.
How many blankets should be produced per day to maximise the total profit?

2
4 The cost of running a boat is (% + 22) dollars per hour, where v kmh~! is the speed of the boat.

Find the speed which will minimise the total cost per kilometre.

5 A psychologist claims that the ability A to memorise simple facts during infancy years can be calculated
using the formula A(t) = ¢tlnt+ 1 where 0 <t <5, t being the age of the child in years. At what
age is the child’s memorising ability a minimum?

6 Radioactive waste is to be disposed of in fully enclosed lead boxes

of inner volume 200 cm3. The base of the box has dimensions
in the ratio 2: 1.

a Show that zh = 100. m——
b Show that the inner surface area of the box is given by T cm

A(z) = 422 + 890 em?.
€T

h cm

¢ Find the minimum inner surface area of the box and the
corresponding value of z.

d Sketch the optimum box shape, showing all dimensions.

7 A manufacturer of electric kettles performs a cost control study. They discover that to produce x kettles
per day, the cost per kettle is given by

2
C(z) =4lnz + (30_96

) dollars
10

with a minimum production capacity of 10 kettles per day.
How many kettles should be manufactured to keep the cost per kettle to a minimum?




Applications of differential calculus

(Chapter 14)

397

10

11

12

13

Infinitely many rectangles which sit on the z-axis can Ay
be inscribed under the curve y = e~
Determine the coordinates of C such that rectangle B C 2
ABCD has maximum area. y=e
- A O D x
A\
Consider the manufacture of cylindrical tin cans of 1 L capacity, a7 cm—»|
where the cost of the metal used is to be minimised. o
v
. . .. 1
a Explain why the height h is given by h = 0020 cm
™
b Show that the total surface area A is given by hem
A=2m2 + 29 m2
T
¢ Find the dimensions of the can which make A as small as T -
u

possible.

A circular piece of tinplate of radius 10 cm has 3 segments
removed as illustrated. The angle 6 is measured in radians.

a Show that the remaining area is given by
A =500+ 3sinf) cm?.

b Find 6 such that the area A is a maximum, and find the
area A in this case.

Sam has sheets of metal which are 36 cm by 36 cm square. He
wants to cut out identical squares which are = cm by z cm from
the corners of each sheet. He will then bend the sheets along the
dashed lines to form an open container.

a Show that the volume of the container is given by
V(z) = 2(36 — 22)? cm?.

b What sized squares should be cut out to produce the
container of greatest capacity?

An athletics track has two ‘straights’ of length [ m, and two semicircular ends

of radius x m. The perimeter of the track is 400 m.

a Show that [ =200 — 7z and write down the possible values that  may

have.

b What values of | and x maximise the shaded rectangle inside the track?

What is this maximum area?

A small population of wasps is observed.

50 000
P(t) = 1 4 1000e—0-5¢

Find when the wasp population is growing fastest.

wasps, where 0 <t < 25.

After t weeks the population is

36 cm

modelled by



398

Applications of differential calculus (Chapter 14)

14

15

16

17

18

When a new pain killing injection is administered, the effect is modelled by E(t) = 750te=1-5¢ units,
where ¢ > 0 is the time in hours after the injection.
At what time is the drug most effective?

A symmetrical gutter is made from a sheet of metal 30 cm wide
by bending it twice as shown.

end view

a Deduce that the cross-sectional area of the gutter is given by
A =100cosf(1 +sin®).

b Show that % =0 when sinf =1 or —1.

¢ For what value of 6 does the gutter have maximum carrying 10em
capacity? Find the cross-sectional area for this value of 6.

A sector of radius 10 ¢cm and angle 6° is bent to form a conical cup as shown.

o when edges [AB] and [CB]
ﬂ becomes 10 cm jomn are joined with tape.

B
A 10cm C

Suppose the resulting cone has base radius » cm and height h cm.
Om

a Show using the sector that arc AC = 5

: 0 912
b Explain why T= o6 ¢ Show that h = 100—(%) .

d Find the cone’s capacity V' in terms of 6 only.

e Find # when V() is a maximum.

Hieu can row a boat across a circular lake of radius 2 km
at 3 kmh~!. He can walk around the edge of the lake at
5 kmh!.

What is the longest possible time Hieu could take to get
from P to R by rowing from P to Q and then walking from
Q to R?

In a hospital, two corridors 4 m wide and 3 m wide meet
at right angles. What is the maximum possible length of an
X-ray screen which can be carried upright around the corner?

&
x

3 m—»|
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" RELATED RATES

A 5 m ladder rests against a vertical wall at
point B. Its feet are at point A on horizontal
ground.

The ladder slips and slides down the wall.

Click on the icon to view the motion of the sliding
ladder.

DEMO

® o

ym wall

The following diagram shows the positions of the
ladder at certain instances.

If AO=2m and OB =y m,
then 22+ y? =52 {Pythagoras}

Differentiating this equation with respect

B
Ba
B3
5m B,
-— .

. . dx dy
to time ¢ gives 20—+ 2y—==0
& a Y
dx dy
or r— —= =0.
dt Yy dt

SERNXN om
Ay Az Ay A

O

This equation is called a differential equation and describes the motion of the ladder at any instant.

dx

dt
dr . .. .. .
E 1S posmve as x 18 Icreasing.
dy

dt

dy . . . .
= s negative as y is decreasing.

is the rate of change in = with respect to time ¢, and is the speed of A relative to point O.

is the rate of change in y with respect to time ¢, and is the speed at which B moves downwards.

Problems involving differential equations where one of the variables is time ¢ are called related rates

problems.

The method for solving related rates problems is:

Step 1: Draw a large, clear diagram of the situation. Sometimes two or more diagrams are necessary.

Step 2:  Write down the information, label the diagram(s), and make sure you distinguish between the

variables and the constants.

Step 3:  Write an equation connecting the variables. You will often need to use:

e Pythagoras’ theorem
e right angled triangle trigonometry

Step 4: Differentiate the equation with respect to ¢ to obtain a differential equation.

e similar triangles
e sine and cosine rules.

Step 5:  Solve for the particular case which is some instant in time.

Warning:

We must not substitute values for the particular case too early. Otherwise we will incorrectly treat
variables as constants. The differential equation in fully generalised form must be established first.
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Example 21 ) Self Tutor

A 5 m long ladder rests against a vertical wall with its feet on horizontal ground. The feet on the
ground slip, and at the instant when they are 3 m from the wall, they are moving at 10 ms~!.

At what speed is the other end of the ladder moving at this instant?

Let OA=2zm and OB =ym
2% +y? =52 {Pythagoras}

P —

Differentiating with respect to ¢ gives

5m
ym
dz dy
20 — +2y— =0
dt * dt
dx d
- 1 Y
. —4+y—=0
A am 0 dt dt We must differentiate before
Particular case: we substitute values for the
) d . particular case. Otherwise
B At the instant when T 10 ms™", we will incorrectly treat the
dy variables as constants.
3(10)+4— =0
(10) +4—
5m
4m S U R e
S 5 .
d Thus OB is decreasing at 7.5 ms~".
A 3m O .. the other end of the ladder is moving down
the wall at 7.5 ms—! at that instant.
Example 22 ) Self Tutor
P

A cube is expanding so its volume increases at a constant rate of 10 cm3 s~—!. Find the rate of change
in its total surface area, at the instant when its sides are 20 cm long.

2

Let x cm be the lengths of the sides of the cube, so the surface area A = 622 cm? and the volume

V =22 cmd.
dA d. av d.
L1228 and L =322
dt dt dt dt .
cm s means
Particular case: : “cm per second”.
. av i 1
At the instant when z = 20, i 10 : em
d i
10=3x202xZ —
dt
de _ 10 _ 1 -1 rcm
7 1200 — T20 ©MS :
dA rcm
Thus — =12 x20 x 035 cm’s™"'
dt
=2cm?s!

the surface area is increasing at 2 cm?s—1,
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Example 23 ) Self Tutor

Triangle ABC is right angled at A, and AB = 20 cm. ABC increases at a constant rate of 1° per
minute. At what rate is BC changing at the instant when ABC measures 30°?

C Let ABC=6 and BC =z cm
20 _
Now cosf == =20z""
T cm x
., do _od d i
—sing ¥ — 929 o+ must be measured in
p dt radians per time unit.
A 20cm B Particular case:
20
When 6 =30°, cos30° ==
x
V3 20
2z
—_ 40
t=1s
Also, a0 _ 1° per min
dt
% cm = 1gg radians per min
. 3 d.
Thus —sin30° x 55 = —20 X — X it
o 1600 dt
30
20cm lxm -3 dz
180 80 1
d:L‘ 80

o = 555 X 5 ¢m per min
~ 0.2327 cm per min

BC is increasing at approximately 0.233 cm per min.

EXERCISE 14F

1 q and b are variables related by the equation ab® = 40. At the instant when a = 5, b is increasing
at 1 unit per second. What is happening to a at this instant?

2 The length of a rectangle is decreasing at 1 cm per minute. However, the area of the rectangle remains
constant at 100 cm?. At what rate is the breadth increasing at the instant when the rectangle is a square?

3 A stone is thrown into a lake and a circular ripple moves out
at a constant speed of 1 ms~!. Find the rate at which the
circle’s area is increasing at the instant when:

a t =2 seconds b t =4 seconds.

4 Air is pumped into a spherical weather balloon at a constant

rate of 67 m® per minute. Find the rate of change in its

surface area at the instant when the radius of the balloon is
2 m.
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5

10

11

For a given mass of gas in a piston, pV!:5 = 400 where p is
the pressure in Nm~2, and V is the volume in m3.
Suppose the pressure increases at a constant rate of 3 Nm™2 per Vv —
minute. Find the rate at which the volume is changing at the

instant when the pressure is 50 Nm~2.

Wheat runs from a hole in a silo at a constant rate and forms a conical heap whose base radius is treble
its height. After 1 minute, the height of the heap is 20 cm. Find the rate at which the height is rising
at this instant.

A trough of length 6 m has a uniform cross-section which is an end view
equilateral triangle with sides of length 1 m. Water leaks from the
bottom of the trough at a constant rate of 0.1 m® per min.

Find the rate at which the water level is falling at the instant when the
water is 20 cm deep.

Two jet aeroplanes fly on parallel courses which are 12 km apart. Their air speeds are 200 ms~! and

250 ms~! respectively. How fast is the distance between them changing at the instant when the slower
jet is 5 km ahead of the faster one?

A ground-level floodlight located 40 m from the foot of a
building shines in the direction of the building.
A 2 m tall person walks directly from the floodlight
towards the building at 1 ms~!. How fast is the person’s
shadow on the building shortening at the instant when the
person is:
a 20 m from the building L

b 10 m from the building? [ 40m >

A right angled triangle ABC has a fixed hypotenuse [AC] of length 10 cm, and side [AB] increases in

length at 0.1 cms~!. At what rate is CAB decreasing at the instant when the triangle is isosceles?

Triangle PQR is right angled at Q, and [PQ] is 6 cm long. [QR] increases in length at 2 cm per minute.
Find the rate of change in QﬁR at the instant when [QR] is 8 cm long.

Review set 14A

1 Find the equation of the tangent to:

a y=—2x2 at the point where z = —1 b f(z) =4In(2z) at the point (1, 41n2)
xZ
¢ f(z)=—— at the point where z = 2.
P
2 The tangent to y = af/tb at =1 is 2z —y =1. Find a and b.
T

3 Suppose f(z) =% +ax, a <0 has a turning point when z = /2.
a Find a.
b Find the position and nature of all stationary points of y = f(x).
¢ Sketch the graph of y = f(x).
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4 Find the equation of the normal to:

a y= s 12 at the point where = =1 b +/x+1 atthe point where z = 3.

P —

5 The tangent to y = x?\/1 —x at x = —3 cuts the axes at points A and B.
Determine the area of triangle OAB.

6 The line through A(2,4) and B(0, 8) is a tangentto y = ﬁ Find a.
x

7 Find the coordinates of P and Q if PQ is

the tangent to y = % at (1, 5).
€T

8 Show that y =2 — 1—% has no horizontal tangents.
T

9 Show that the curves whose equations are y = /3z+ 1 and y = v/52 — 22 have a common
tangent at their point of intersection. Find the equation of this common tangent.

10 Consider the function f(z) =z + Inz.

a Find the values of « for which f(z) is defined.
Find the sign of f/(z) and comment on its geometrical significance.
Sketch the graph of y = f(x).

Find the equation of the normal at the point where x = 1.

e 0 T

11 Sketch the graph of z +— 2 for z > 0.
x

Find the equation of the tangent to the function at the point where =z =k, k > 0.

If the tangent in b cuts the z-axis at A and the y-axis at B, find the coordinates of A and B.
What can be deduced about the area of triangle OAB?

Find & if the normal to the curve at = = k passes through the point (1, 1).

o 2 06 T 9

12 A particle P moves in a straight line with position relative to the origin O given by
s(t) = 2t3 — 9t + 12t — 5 cm, where ¢ is the time in seconds, ¢ > 0.

a Find expressions for the particle’s velocity and acceleration and draw sign diagrams for each
of them.

Find the initial conditions.

Describe the motion of the particle at time ¢ =2 seconds.

Find the times and positions where the particle changes direction.
Draw a diagram to illustrate the motion of P.

- 0 2 060 T

Determine the time intervals when the particle’s speed is increasing.
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13

14

15

16

17

18

19

Rectangle ABCD is inscribed within the parabola Ay

2 and the z-axis, as shown.

y=k—=x
a If OD = z, show that the rectangle ABCD has area
function A(x) = 2kz — 23, = =

b If the area of ABCD is a maximum when
AD = 2+/3, find k. A O D x

A particle moves in a straight line along the z-axis with position given by

x(t) = 3 +sin(2t) cm after ¢ seconds.
a Find the initial position, velocity, and acceleration of the particle.
b Find the times when the particle changes direction during 0 < ¢ < 7 seconds.
¢ Find the total distance travelled by the particle in the first 7 seconds.

A rectangular gutter is formed by bending a 24 cm wide end view
sheet of metal as shown. /' L J‘\
Where must the bends be made in order to maximise the

capacity of the gutter? [ 24cm >

A manufacturer of open steel boxes has to make one with a open

square base and a capacity of 1 m3. The steel costs $2 per T

square metre.

a If the base measures z m by x m and the height is y m, \
find v in terms of x. = '

b Hence, show that the total cost of the steel is C(x) = 222 + 2 dollars.
X
¢ Find the dimensions of the box which would cost the least in steel to make.

A particle P moves in a straight line with position from O given by s(¢t) = 15t — % cm,
where ¢ is the time in seconds, ¢t > 0.

a Find velocity and acceleration functions for P’s motion.

b Describe the motion of P at ¢ =3 seconds.

¢ For what values of ¢ is the particle’s speed increasing?

Infinitely many rectangles can be inscribed under the curve

y = e 2® as shown. \
Determine the coordinates of A such that the rectangle

OBAC has maximum area. A —on

A man on a jetty pulls a boat directly towards him so the rope is coming in at a rate of 20 metres
per minute. The rope is attached to the boat 1 m above water level, and the man’s hands are 6 m
above the water level. How fast is the boat approaching the jetty at the instant when it is 15 m
from the jetty?
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20 Water exits a conical tank at a constant rate of 0.2 m® per minute. @
Suppose the surface of the water has radius 7.

a Find V(r), the volume of the water remaining in the tank.

b Find the rate at which the surface radius is changing at the §m
instant when the water is 5 m deep. l
Review set 14B
1 Find the equation of the normal to:
a y= ! 722:6 at the point where = =1 b y= e ® at the point where z =1

T

c y= L at the point where x = 4.

Ve
2 The curve y = 22® + ax + b has a tangent with gradient 10 at the point (—2, 33). Find the
values of a and b.
3 y = f(x) is the parabola shown.
a Find f(3) and f/(3).
b Hence find f(x) in the form
f(z) =az?+ bz +c

4 Find the equation of:

1 .
a the tangent to y = —— at the point where z = %
s x

b the normal to y = cos(§) at the point where x = 7.

5 At the point where z = 0, the tangent to f(z) = e*®* + pz + ¢ has equation y = 5z — 7.
Find p and gq.
6 Find where the tangent to y = 22% + 4z —1 at (1, 5) cuts the curve again.

7 Find a given that the tangent to y = at x =0 passes through (1, 0).

(az +1)2
8 Consider the function f(x)=e* — .

a Find and classify any stationary points of y = f(z).

b Show that e* >z + 1 for all z. ¢ Find f"(z).

9 Find where the tangent to y =1In(z* +3) at z =1 cuts the y-axis.

10 Consider the function f(x) = 223 — 1922 + 52z — 35.
a Find the y-intercept of the graph y = f(x).
b Show that = = 1 is a root of the function, and hence find all roots.
¢ Find and classify all stationary points.
d Sketch the graph of y = f(z), showing all important features.
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3z
14+

11 If the normal to f(z) = at (2, 2) cuts the axes at B and C, determine the length BC.

12 The height of a tree ¢ years after it was planted is given
by H(t) =60+ 40In(2t+1) cm, t > 0.

a How high was the tree when it was planted?

b How long does it take for the tree to reach:

i 150 cm it 300 cm?
¢ At what rate is the tree’s height increasing after:
i 2 years il 20 years?

13 A particle P moves in a straight line with position given by s(t) = 80e 1°© — 40t m where t is
the time in seconds, ¢ > 0.

a Find the velocity and acceleration functions.
Find the initial position, velocity, and acceleration of P.

1

b
¢ Sketch the graph of the velocity function.
d Find the exact time when the velocity is —44 ms™".

vZ 9000

14 The cost per hour of running a freight train is given by C(v) = o 4 — dollars where v is the
average speed of the train in kmh~1.
a Find the cost of running the train for:
i two hours at 45 kmh~! ii 5 hours at 64 kmh~1.
b Find the rate of change in the hourly cost of running the train at speeds of:
i 50 kmh! ii 66 kmh™!.

¢ At what speed will the cost per hour be a minimum?

15 A nparticle moves along the =z-axis with position relative to origin O given by
x(t) =3t —+/t+1 cm, where ¢ is the time in seconds, ¢ > 0.

a Find expressions for the particle’s velocity and acceleration at any time ¢, and draw sign
diagrams for each function.

Find the initial conditions, and hence describe the motion at that instant.
Describe the motion of the particle at ¢ = 8 seconds.
Find the time and position when the particle reverses direction.

o 2 60 T

Determine the time interval when the particle’s speed is decreasing.

16 A 200 m fence is placed around a lawn which has the shape of a
rectangle with a semi-circle on one of its sides.
a Using the dimensions shown on the figure, show that
y =100 -z — .
b Find the area of the lawn A in terms of z only. gl

¢ Find the dimensions of the lawn if it has the maximum possible

area.
2rm
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17

18

19

20

21

22

A cork bobs up and down in a bucket of water such that the distance
from the centre of the cork to the bottom of the bucket is given by -

s(t) = 30 + cos(wt) cm, ¢ > 0 seconds. "
1

a Find the cork’s velocity at times ¢ =0, 3, 1, 1%, and 2 s.

b Find the time intervals when the cork is falling.

A rectangular sheet of tin-plate is 2k cm by k& cm.
Four squares, each with sides « cm, are cut from its
corners. The remainder is bent into the shape of an open
rectangular container. Find the value of x which will
maximise the capacity of the container.

Two runners tun in different directions, 60° apart. A runs at 5 ms~! and B runs at 4 ms™1.

B passes through X 3 seconds after A passes through X.
At what rate is the distance between them increasing at the time when A is 20 metres past X?

Rectangle PQRS has PQ of fixed length 20 cm, and [QR] increases in length at a constant rate of
2 cms~!. At what rate is the acute angle between the diagonals of the rectangle changing at the
instant when QR is 15 cm long?

AOB is a fixed diameter of a circle of radius 5 cm. Point P
moves around the circle at a constant rate of 1 revolution in
10 seconds. Find the rate at which the distance AP is changing
at the instant when:

a AP = 5 cm and increasing
b PisatB.

Consider the parabola f(z) = 4—be2 where b > 0.

a 1 Find the equation of the tangent to y = f(x) at the point P(a, f(a)).
ii Show that this meets the z-axis at the point P’ (g, 0).

b 1 Find the equation of the line perpendicular to this tangent line, and which passes
through P’.
ii Show that this line has y-intercept F(0, b).

ifi Show that the distance FP equals the distance from P to the line y = —b.

¢ The point F(0, b) is invariant Ay
since it is independent of our
choice of a. F is called the focus
of the parabola. The line y = —b
is called the directrix.

i Prove the reflective property
of the parabola, that any -
vertical ray will be reflected
off the parabola into the focus.
Hint: Show that o = (.

Y
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Suppose a # 0 and that
Q(c, f(c)) is another point
on the parabola such that the
tangents from P and Q are
perpendicular. Show that the
intersection of the tangents
occurs on the directrix.

AY

Y
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Opening problem

The function f(x) = 2+ 1 lies above the x-axis for
all z eR.
Things to think about:

a How can we calculate the shaded area A, which is
the area under the curve for 1 <z < 4?

b What function has z2 + 1 as its derivative?

In the previous chapters we used differential calculus to find the derivatives of many types of functions. We
also used it in problem solving, in particular to find the gradients of graphs and rates of changes, and to
solve optimisation problems.

In this chapter we consider integral calculus. This involves antidifferentiation which is the reverse process
of differentiation. Integral calculus also has many useful applications, including:

e finding areas of shapes with curved boundaries

e finding volumes of revolution

e finding distances travelled from velocity functions

e solving problems in economics, biology, and statistics

e solving differential equations.

'THE AREA UNDER A CURVE

The task of finding the area under a curve has been important to mathematicians for thousands of years. In
the history of mathematics it was fundamental to the development of integral calculus. We will therefore
begin our study by calculating the area under a curve using the same methods as the ancient mathematicians.

UPPER AND LOWER RECTANGLES
Consider the function f(z) = 2% + 1.

We wish to estimate the area A enclosed by y = f(x), the
z-axis, and the vertical lines z =1 and z = 4.

Suppose we divide the interval 1 < z < 4 into three strips of
width 1 unit as shown. We obtain three subintervals of equal
width.

The diagram alongside shows upper rectangles, which are
rectangles with top edges at the maximum value of the curve
on that subinterval.

15

The area of the upper rectangles, 10
Ay =1x f(2)+1x f(3) + 1% f(4) "

5 10
=5+10+17 :sl-—/?5 .

= 32 units? (0] 1 2 3 4 =




Integration (Chapter 15) 411

The next diagram shows lower rectangles, which are rectangles Ay flz)=a2+1
with top edges at the minimum value of the curve on that 90 /
subinterval.
15
The area of the lower rectangles, 10
A =1xf()+1x f(2)+1x f(3) ; 0 17
=2+4+5+10 ~1] 5
= 17 units? To] 1 2 3 4 %
3

Now clearly A; < A < Ay, so the area A lies between 17 units? and 32 units?.

If the interval 1 < x <4 was divided into 6 subintervals, each of width %, then

Ay = 5f(13) + 3f(2) + 5£(25) + 5£(3) + 3£(35) + 3£ (4)
=3B +5+2+10+3+17)
= 27.875 units
and A = L£(1) + 1£(13) + LF(2) + 2 £(28) + 1 £(3) + 1£(38)
=312+ +5+2+10+ 38
= 20.375 units
From this refinement we conclude that the area A lies between 20.375 and 27.875 units?.

As we create more subintervals, the estimates Ay and Ay will become more and more accurate. In fact, as
the subinterval width is reduced further and further, both Ay and Ay will converge to A.

2 and the z-axis for

We illustrate this process by estimating the area A between the graph of y = =z
0<z <L

This example is of historical interest. Archimedes (287 - 212 BC) found the exact area. In an article that
contains 24 propositions, he developed the essential theory for what is now known as integral calculus.

Consider f(z) = 2% and divide the interval 0 < z <1 into 4 subintervals of equal width.

4y f(z)=2> 4y f(z)=2>
1 (1,1) 1 (1,1)

) 1 = 0 1 "
3 3
A =3O+ R HEE T EE? e A =337 I G 0P
~ 0.219 ~ 0.469
Now suppose there are n subintervals between = =0 and z =1, each of width L szgék
n
We can use the area finder software to help calculate Ay, and Ay for large values of n. o

b
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The table alongside summarises the results you should obtain n Ap Ay Average
for n =4, 10, 25, and 50. 4 021875 | 0.46875 | 0.34375

The exact value of A is in fact %, as we will find later in the 10 | 0.28500 | 0.38500 | 0.33500

chapter. Notice how both Ay and Ay are converging to this 25| 0.31360 | 0.35360 | 0.33360
value as n increases. 50 | 0.32340 | 0.34340 | 0.33340

EXERCISE 15A.1

1 Consider the area between y = x and the z-axis from =z =0 to = = 1.
a Divide the interval into 5 strips of equal width, then estimate the area using:
i upper rectangles ii lower rectangles.
b Calculate the actual area and compare it with your answers in a.

. 1 . .. . .
2 Consider the area between y = — and the z-axis from x =2 to x = 4. Divide the interval into
x

6 strips of equal width, then estimate the area using:

a upper rectangles b lower rectangles.
3 Use rectangles to find lower and upper sums for the area between the graph of y = 22 AREA
and the z-axis for 1 < x < 2. Use n = 10, 25, 50, 100, and 500. Give your answers FINDER
to 4 decimal places. oA

As n gets larger, both A;, and Ay converge to the same number which is a simple &% K
fraction. What is it?

4 a Use lower and upper sums to estimate the area between each of the following functions and the
z-axis for 0 < z < 1. Use values of n = 5, 10, 50, 100, 500, 1000, and 10000. Give your
answer to 5 decimal places in each case.

1 1
i y=2a° il y==z ifi y=2a2 iv y=2a3
b For each case in a, Ay, and Ay converge to the same number which is a simple fraction. What
fractions are they?

¢ Using your answer to b, predict the area between the graph of y = z® and the z-axis for
0 <z <1 and any number a > 0.

5 Consider the quarter circle of centre (0, 0) and 4y
radius 2 units illustrated. 2
. 1 . . y= 4-— $2
Its area is 7 (full circle of radius 2)
_1 2
=7 XTX2
= 7 units? _ .
O 2 x
3

a Estimate the area using lower and upper rectangles for n = 10, 50, 100, 200, 1000, and 10 000.
Hence, find rational bounds for 7.

b Archimedes found the famous approximation 3% <m < 3%.
For what value of n is your estimate for 7 better than that of Archimedes?
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THE DEFINITE INTEGRAL

Consider the lower and upper rectangle sums for a function which is positive and increasing on the interval
a<x<hb

b—a
—

We divide the interval into n subintervals, each of width w =

Ly /y:f(;t) HY /y:f(:r)
/

0 C: Ty Ty Ty T, l? z 0 ‘% Ty Ty Ty Ty lf) z

A
' T Tno1 Ty, ' Ty T, T,

Since the function is increasing:

n—1
Ap =w f(zo) +w f(21) + oo + W f(Tn—2) + w f(Tn-1) = wz f(xi) {i a; = a1+a2+....+an]
i=0

i=1
w) | flw)
i=1

Ay =w f(z1) + w f(z2) + oo + w fTn-1) + w f(zn)

Notice that Ay — Ap =w (f(xn) — f(z0))
1

~(b—a) (£(b) = f(a))

lim (Ay — AL) =0 {since lim + =0}

n—oo n—oo N

lim means we
n—oo

have infinitely
many subintervals.

lim Ar = lim Ay {when both limits exist}

n—oo

since A; < A < Ay for all values of n, it follows that

n—oo n—oo

This fact is true for all positive continuous functions on an interval a < z < b.

b
The value A is known as the “definite integral of f(z) from a to b”, written A = / f(z) da.

If f(z) >0 forall a <<z <b, then
b Y y=f(z)
/ f(z) dz is equal to the shaded area.
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Historical note

The word integration means “to put together into a whole”. An integral is the “whole” produced from
integration, since the areas f(x;) X w of the thin rectangular strips are put together into one whole
area.

The symbol / is called an integral sign. In the time of Newton and Leibniz it was the stretched out

letter s, but it is no longer part of the alphabet.

Example 1 ) Self Tutor

1
Sketch the graph of y = 2% for 0 <z < 1. Shade the area described by / z? dr.
0

Use technology to calculate the lower and upper rectangle sums for n equal subintervals where
n =5, 10, 50, 100, and 500.

1
Hence find / x* dx to 2 significant figures.
0

Ay b n Arp Ay
1 5 | 0.1133 | 0.3133
0.8 10 | 0.1533 | 0.2533
0.6 50 | 0.1901 | 0.2101
04 100 | 0.1950 | 0.2050
500 | 0.1990 | 0.2010
0.2
h ol 02 04 06 08 1 -

¢ When n =500, Ar =~ Ay =~ 0.20, to 2 significant figures.

1 1
since A, < / 2 dr < Ay, / 2t dz ~ 0.20
0 0

EXERCISE 15A.2

1 a Sketch the graph of y=/z for 0 <z <1 FINBER
Shade the area described by / 1 Vv d. ;.:, %)
b Find the lower and upper rectar(igle sums for n =5, 10, 50, 100, and 500. i
¢ Hence find / 1 Vz dx to 2 significant figures.
2 Consider the regior(l) enclosed by y = V1+ 23 and the z-axis for 0 < z <2 GP%T(TSEG

b

Write expressions for the lower and upper rectangle sums using n subintervals,
n € N. A~
Find the lower and upper rectangle sums for n = 50, 100, and 500. L

2
Hence estimate / V1423 de.
0

-
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3 22
3 The integral / e ° dx is of considerable interest to statisticians.
-3 wz
a Use the graphing package to help sketch y =e 2 for —3 <z < 3.
b Calculate the upper and lower rectangular sums for the interval 0 < x

mZ

¢ Use the symmetry of y =e 2 to find upper and lower rectangular sums for —3 <z <0 for

< 3 using n = 2250.

n = 2250.
3 g2 AREA
d Hence estimate / e 2 dx. FINDER
s ]
How accurate is your estimate compared with +/27? ="‘
i
Example 2 ) Self Tutor

2 1
Use graphical evidence and 924+ 1) d b 7l — &2 4l
known area facts to find: a 0 (2w +1) do 0 o

2
a VY y=o2z 41 /(2m+1)dx
0
5 (2,5) = shaded area
1
s = (57) x2
1 =6
Ny L ..
0 2
A\

b If y=+1—22 then y> =1—2? andso z?+ y? =1 which is the equation of the unit
circle.  y =+/1 — 2 is the upper half.

LY 1
. / V1-—22dx
1 Y= 1—.1‘ 0
= shaded area
=1(7r®) where r=1
- > T
-1 (0] 1 _m
A\ 4

4 Use graphical evidence and known area facts to find:

a /13(1+4w)dx b /Z(Z—x)dx c /:Mda:

-1

1| [ANTIDIFFERENTIATION

In many problems in calculus we know the rate of change of one variable with respect to another, but we

dy

do not have a formula which relates the variables. In other words, we know - but we need to know y
T

in terms of x.
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The process of finding y from Z—y, or f(z) from f’(x), is the reverse process of
T

differentiation. We call it antidifferentiation.

/ differentiation \
d
y or f(x) = or f(x)
antidifferentiation/

. d
Consider & = 22,
dx

From our work on differentiation, we know that when we differentiate power functions the index reduces
by 1. We hence know that y must involve z3.

. d . . d,
Now if y =23 then <£ = 322, so if we start with y = 22 then d_y =22
XL i

However, for all of the cases y = $2® +2, y = 22% + 100, and y = 32° — 7, we find that Z—y =22
XL

In fact, there are infinitely many functions of the form y = %xg + ¢ where c is an arbitrary constant, which

will give d—y = 22, Ignoring the arbitrary constant, we say that %x3 is the antiderivative of z2. It is
X

the simplest function which, when differentiated, gives 2.

If F(z) is a function where F’(z) = f(z) we say that:

o the derivative of F(z) is f(z) and
e the antiderivative of f(z) is F(x).

Example 3 ) Self Tutor
. . . . 1
Find the antiderivative of: a z° b e2* c —
VT
d d
a — (x4) =43 b — (621) =e?® x 2
dx dx
d 1 4y _ .3 4o ooy 1 2 _ 2
E(Zx)—x ,.5(56‘1’)—§xexx2—ez
the antiderivative of z® is %174. . the antiderivative of e2% is %ezm.
1 _1
c —=x ?
N
d, L 1 _1
Now —(z2)=sx
—(7) =3
d 1 N - _1
—((2z2)=2(5)r 2=z 2
L (2%) = 2(3)

. 1.
the antiderivative of — is 2+/z.
7 s e
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EXERCISE 15B

1 a Find the antiderivative of:

1 1
iz i 22 iii 2 iv z72 v ¢ vi z3 vii z 2
b Predict a general rule for the antiderivative of z™, for n # —1.
2 a Find the antiderivative of:
1 x
- -m amm 5T - - -
i e ii e’ iili e iv 001z v ™ vi e3

kx

b Predict a general rule for the antiderivative of e** where k is a constant, & # 0.

3 Find the antiderivative of:
a 622 +4x by first differentiating 2 + 22 b e3**! by first differentiating e3**1
¢ /z by first differentiating x/z d (2x+1)3 by first differentiating (2z + 1)%.

'THE FUNDAMENTAL THEOREM OF CALCULUS

Sir Isaac Newton and Gottfried Wilhelm Leibniz showed the link between differential calculus and the
definite integral or limit of an area sum we saw in Section A. This link is called the fundamental theorem
of calculus. The beauty of this theorem is that it enables us to evaluate complicated summations.

We have already observed that:

If f(xr) is a continuous positive function on an interval
a < x < b then the area under the curve between = = a

b
and x =0 is / f(x) dx.

Discovery The area function

Consider the constant function f(z) = 5.

We wish to find an area function which will give the area bY
under the function between = = a and some other value of 5
 which we will call . ; U
t
The area function is  A(t) = / 5 dx
- 0 m »
“ . 0 a t T
= shaded area in graph v l—t—a—»
=(t—a)b
=5t — ba

we can write A(t) in the form F(t) — F(a) where F(t) =5t or equivalently F(x)= 5z
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What to do:
1 What is the derivative F’(z) of the function F(z) = 5z? How does this relate to the function
f(z)?

2 Consider the simplest linear function f(x) = . by y=zx
The corresponding area function is

A(t):/at:vdac t

= shaded area in graph ia
5k 9/ - .
_ a _ a 7
7( 2 )(t a) ! let — a—
a Write A(¢) in the form F(t) — F(a).
b What is the derivative F’(z)? How does it relate to the function f(z)?
3 Consider f(x) =2z + 3. The corresponding area function is
¢
A(t):/ (2z + 3) dz (y=22+3
= shaded area in graph
— (%) (t— a) 2%+3
a Write A(¢) in the form F(t) — F(a).
b What is the derivative F’(x)? =
How does it relate to the function f(x)?

4 Repeat the procedure in 2 and 3 to find area functions for:
a f(z)=4z+3 b f(z)=5-2z
Do your results fit with your earlier observations?

5 If f(z)=32z%+4x+5, predict what F(z) would be without performing the algebraic procedure.

From the Discovery you should have found that, for f(x) > 0,
t
/ f(z) de = F(t) — F(a) where F'(z)= f(x). F(z) is the antiderivative of f(z).
a

The following argument shows why this is true for all functions f(x) > 0.

Consider a function y = f(z) which has antiderivative F(x) Ay
¢ =f(z
and an area function A(t) = / f(z) dx which is the area y=/lo)
from x=a to z=1t. ‘
A(t)
A(t) is clearly an increasing function and - .
Ala) =0 .. (1) 0 a t b I
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Consider the narrow strip between = =t and =z =t + h. Ay
The area of this strip is A(t+h) — A(t), but we also know it y=f(x)
must lie between a lower and upper rectangle on the interval -—
t<xz<t+h of width h.
area of smaller area of larger
rectangle < Alt+h) - AR < rectanglf (0] a b
t t+h

A

8Y

If f(x) is increasing on this interval then
hf(t) < A(t+h)—A(t) < hf(t+h)

pity < AN ZAO o pgn)

A(t+ ) — A(t)

Equivalently, if f(z) is decreasing on this interval then f(¢t+ h) < o

< f().
Taking the limitas h — 0 gives f(t) < A'(t) < f(¢)
LA = f()

So, the area function A(¢) must only differ from the —» h y=f(z)
antiderivative of f(¢) by a constant.

Aty =F(t) + ¢
Letting t=a, A(a)
But from (1), A(a)

e

F(a)+c

0 F(t) f(t+h)
—F(a)

A(t) = F(t) — F(a)

b
Letting t = b, / f(z) do = F(b) — F(a) h t t+h i

. . . . enlarged strip
This result is in fact true for all continuous functions f(z).

THE FUNDAMENTAL THEOREM OF CALCULUS

From the geometric argument above, the Fundamental Theorem of Calculus can be stated in two forms:

t
For a continuous function f(z), if we define the area function from = =a as A(t) = / f(z)dz,

then A'(x) = f(z).

or more commonly:

b
For a continuous function f(x) with antiderivative F(x), / f(x)dx = F(b) — F(a).
a

PROPERTIES OF DEFINITE INTEGRALS

The following properties of definite integrals can all be deduced from the fundamental theorem of calculus:

a b
o / f(z)dz =0 ° / cdx =c(b—a) {cis a constant}

. /baf(m)dm:—/abf(m)da: . /abcf(x)dxzc/abf(x)dx
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/f d:r+/f dx—/f
o/G[f()ig dx_/f dxi/a g(x) dz

Example proof:
b c Ay
/a f(x)da:+/b f(x)dzx = f(z)
=F(b) — F(a) + F(c) —
— F(a)

=F(c)
c Ay A2
= / f(z)dx

(0) a b c T

Y

In particular, for the case where a < b<c¢ and f(xz) >0 for a <x < ¢, we observe that
b c c
/ f($)dx~|—/ f@)de = A1 + Ay = / f(z)dx
a b a

Example 4 ») Self Tutor

Use the fundamental theorem of calculus to find the area between:
a the r-axisand y =22 from 2 =0 to z=1
b the z-axisand y=+/z from z=1 to z=09.

3

a ty f(x) =22 has antiderivative F(z) = =
y =22 3
1
", the area—/ z? dx
0
= F(1) — F(0)
=1_
— _ =3
0, 1 x = 1 units?
S
b LY f(z) =+/r =22 has antiderivative
y=v 23
F(r) = & = 52/
2
1
P the area = x? dx
of 1 9 =z 1
' =F(9) - F(1)
_2 2
=3 X 27 — 3 x 1
=171 units®
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EXERCISE 15C

1 Use the fundamental theorem of calculus to find the area between:
a the r-axisand y =2 from 2 =0 to z=1
b the z-axisand y =22 from z=1 to = =2

¢ the z-axisand y =/z from =0 to =z =1.
2 Use the fundamental theorem of calculus to show that:

a / f(x)dz =0 and explain the result graphically
a

b
b / cdx = ¢(b—a) where ¢ is a constant
a

c /b f(x)dxz—/ab f(z)dz

b
d / cf(z)dx = c/ f(z)dx where c is a constant

e / ' [F@) + 9(a)) de = / " f@)da+ / o) dr

3 Use the fundamental theorem of calculus to find the area between the x-axis and:
a y=23 from z=1 to x =2
b y=22+3zx+2 from =1 to 2 =3
c y=+/x from z=1 to =2
d y=¢" from x=0 to x=1.5

y:i from x=1 to =4

/7
4 a Use the fundamental theorem of calculus to show that Ay
b b
|ty do== [ f@a - — -
b Hence show that if f(z) <0 forall z (;n y=f(z)
a <z <b then the shaded area = —/ f(z)dx. ,/,

¢ Calculate the following integrals, and give graphical interpretations of your answers:

i/ol(—x2)dx i /01(502—1;)dm i /0233:d:c

2
d Use graphical evidence and known area facts to find / (—\/ 4— x2) dx.
0
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1

Earlier, we showed that the antiderivative of 22 is gﬂcS, and that any function of the form %x?’ + ¢ where

¢ is a constant, has derivative z2.
We say that the indefinite integral or integral of z% is 1z® + ¢, and write / ?dr = 12® +c

We read this as “the integral of 22 with respect to z is %x:” + ¢, where c is a constant”.

If F'(z)= f(z) then /f(ac) dx=F(z) +c

This process is known as indefinite integration. It is indefinite because it is not being applied to a particular
interval.

DISCOVERING INTEGRALS

Since integration is the reverse process of differentiation we can sometimes discover integrals by
differentiation. For example:

o if F(z)=2* then F'(z)=4a3
/43:3 de =zt +c

- 3 o 1,75 1
o if F(z)=+x=22 then F'(z)=3iz N
1

The following rules may prove useful:

e Any constant may be written in front of the integral sign.

/kf(x) dr = k/f(ﬂc) dx, k is a constant

Proof: Consider differentiating kF(z) where F'(z) = f(x).

4 kF@)=kF(@) =k f(z)

dx
/kf(x) dx =k F(x)

=k /f(m) dx

e The integral of a sum is the sum of the separate integrals. This rule enables us to integrate term by
term.

J@+g@lde= [ f@)do+ [ ofa)ds
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Example 5 ) Self Tutor
If y=a*+223 find % " Hence find /(2:!:3 + 322) dz.
dx c represents a general
constant, so is simply any
If y=a"+22% then % = 423 4 622 value ¢ € R.
o Instead of writing &, we
/ (42> + 62%)dz = 2* +22% + ¢ can therefore still write
just c.

\ J
/2(2x3+3m2)dx:x4+2x3+c \

2/(2x3+312)dx:x4+2:c3+c

/(21:3 +32%)de =22t + 2% + ¢
EXERCISE 15D
1 If y=2", find % Hence find /xG dx.
X
2 If y=23+ 22, find Z—y Hence find /(3902 + 2z) dz.
X
X

3 If y=e?**t, find Z_y Hence find /eQdea:.

4 If y= 2z +1)* find % Hence find /(2x+1)3 dx.
X

Example 6 ) Self Tutor
Suppose  y = +/5x — 1.
a Find dy b Hence find L dx
dx’ vz —1 '
. 5
a y—\/591:—1l b Using a, /ﬁ der=+bx —1+c
= (bx —1)>2 .5 1 = /51 —
i B R mdw- br—1+4c¢
o 1(5z—1) 2(5) {chain rule} .
T . _ 2 _
_ 5 . /—md:ﬁ svor—1l+c
2y/bxr —1

5 If y=ax/r, find Z—y Hence find /\/de
X

X T\/T

6 If y:%, find Z—y Hence find %_ dx.
x
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7 If y=cos2x, find Z—y Hence find /sin2xd:v.
X

8 If y=sin(l—5z), find dy
dx

Hence find /cos(l — 5z) dx.

9 By considering di(z:2 — )3, find /(21: —1)(2® — 2)? du.
X

10 Prove the rule /[f(.T) +g(x)]dx = /f(:v

11 Find Z—y if y =+/1 —4z. Hence find /
X

)dx + /g(:v) dz.

! dx.

V1—dz

" [RULES FOR INTEGRATION

In Chapter 13 we developed a set of rules to help us differentiate functions more efficiently:

We can check that an integral
is correct by differentiating the

answer. It should give us the
integrand, the function we
originally integrated.

Function Derivative Name
¢, a constant 0
mx + ¢, m and c¢ are constants m
z" na™ ! power rule
cu(x) cu/ (z)
u(z) + v(z) u'(z) + v'(x) addition rule
u(z)v(z) ' (z)v(z) + u(x)v'(x) | product rule
% u/(w)v(ﬁ(;);(w)v/(w) quotient rule
y = f(u) where u=u(x) Z—Z = j—z Z—Z chain rule
e e
of (@) ! @) f1(z)
Inz 1
T
4 T
In f(z) J;(w))
[/ (@)]" n[f(@)]" " f'(z)
sinz coszT
cos T —sinz
tan sec? x
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These rules or combinations of them can be used to differentiate all of the functions we consider in this
course. Given an algebraic formula, we can repeatedly apply these rules until we get to basic functions such
as «™ or sinx, which we know how to differentiate.

However, the task of finding antiderivatives is not so easy. Given an algebraic formula there is no simple
list of rules to find the antiderivative.

The problem was finally solved in 1968 by Robert Henry Risch. He devised a method for deciding if a
function has an elementary antiderivative, and if it does, finding it. The original summary of his method
took over 100 pages. Later developments from this are now used in all computer algebra systems.

Fortunately, our course is restricted to a few special cases.

RULES FOR INTEGRATION

For k a constant, — (kz +¢)=k /k: dr =kx +c

a4
dx

n+1 n
If 0t -1, i(w +c>zwzxn
dr\ n+1 n+1

%(el’—i—c):em

cosxdxr =sinx + ¢

—

d% (sinx + ¢) = cosz

d . g
d—(—cosa:—i—c):smx /smwdw:—cosm—l—c
X
Function Integral c is an arbitrary constant called
3 i the constant of integration or
, @ constant T+ integrating constant.
mn+1
", n# -1 @
n+1
e’ e’ +c
cosx sinz + ¢
sinz —cosx+c

Remember that you can always check your integration by differentiating the resulting function.
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Example 7 ) Self Tutor
Find:
a /($3_212+5)dx b /(%—ﬁ) dz c /(2sinx—cosm)dm’
T
a /(333 — 222+ 5)dx b /(i3 —\/E) dz c /(QSin:r—cos:r)dac
€T
:f_ﬁ+5x+c :/(:c?’—:v%)dm =2(—cosz) —sinxz + ¢
4 3 5 = —2cosx —sinx +c¢
T 2 $5
T S
2
3

There is no product or quotient rule for integration. Consequently we often have to carry out multiplication
or division before we integrate.

Example 8 ) Self Tutor

Find: a /<3m+%)2 dx b /(272\/_52) dx
T 2) de

[ V)

B

and simplify to a form
= / (9x2 +12 4+ %) dx that can be integrated. _
x

2
2
a / (3!17 + ;) dx We expand the brackets b /

= /(9x2 + 12+ 427 ?) dx

4z1
+c

3
:9%-1-12:24-

:3x3+12x—£+c
v =22°z —4yz +¢

EXERCISE 15E.1
1 Find:

a /(x4x2:c+2)dx b /(5x44x36m27)daz c /(\/5+e’”)dﬂc

d /(361’+x2)dx e /(x x—2)dx f /(ﬁz+4x>d:€
g /(%xg—x‘l—l—x%)dx h /(§+$2—6$)d£ﬂ i/(56$+%m3—\/§)dac
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2 Integrate with respect to x:
a 3sinz —2 b 4x —2cosx ¢ sinz —2cosz +e”
d 2%/r —10sinz e TV | sy f —sinz+27z
3 Find:
2 . _ L w1
a /(1: + 3z —2)dz b / <\/_ \/E) dx c / (26 x2) dx
1—4x 9 2
d dx e [(2z+1)dx f (w + —) dx
TN/ T x
22 —1 z2 — 4z +10 . 3
4 Find:
a /(\/E—i—%cosx) dx b /(2et—4sint)dt c /(3cost—sint)dt
5 Find y if:
dy _ Y g2 W 57— g2
a dx_ﬁ b d$_4x c d$—5\/a_3 x
a B_L e W _ger_5 £ I3 432
dx x2 dx dx
6 Find f(x) if:
a fi(z)=(1-2) b e =vE- = ¢ f)="50
vV 2
PARTICULAR VALUES
We can find the constant of integration c if we are given a particular value of the function.
Example 9 ) Self Tutor

Find f(x) given that:

a f'l(z)=2>-222+3 and f(0)=2 b f(z)=2sinz—+/x and f(0)=4.

a Since f'(z)=a—222+3,

f(z) = /(ac3 — 222 +3)dx

T 23
f(x)—T—T—i-?)w—l-c
But f(0)=2, so c=2
4
Thus f(x)—%—2i+3x+2

b f@):/(%m-ﬁ) do

3
oo flx) = —2cosz — 327 4 ¢
But f(0) =4,
so —2cos0—0+4+c=4
. c=6

3
Thus f(z) = —2cosz — 227 +6.
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If we are given the second derivative we need to integrate twice to find the function. This creates two
integrating constants, so we need two other facts about the curve in order to determine these constants.

Example 10 «) Self Tutor

Find f(x) giventhat f”(z)=1222—-4, f/(0)=-1, and f(1)=4.

If f’(z) =122 —4

1223

then f'(z) —dr+c {integrating with respect to x}

f'(z) = 42® —da + ¢
But f(0)=-1, so c=-1
Thus f'(z) = 42 — 4z — 1

Lo fle)=— - ——z+d {integrating again}

oo fl@)y =2 -2 —x +d
But f(1)=4, so 1—-2—-1+d=4 andhence d=26
Thus f(z) =2* — 222 — 2z +6

EXERCISE 15E.2
1 Find f(x) given that:

a f'(z)=2z—1 and f(0)=3 b f'(r)=32z*+2z and f(2)=5

c f’(x):ef”+% and f(1)=1 d f’(a:):mf% and f(1)=2
2 Find f(x) given that:

a f'(z)=2%—4cosz and f(0)=3 b f'(x) =2cosz —3sinz and f(%):%
3 Find f(z) given that:

a f(z)y=2x+1, f/(1)=3, and f(2)=7

b f(z) =157 + % F(1) =12, and f(0) =5

¢ f’(z) =cosz, f'(§)=0, and f(0)=3

d f”(x) =2z and the points (1, 0) and (0, 5) lie on the curve.

12 INTEGRATING. 1=+

In this section we deal with integrals of functions which are composite with the linear function az + b.

. d (1 1
Notice that = (— e“+b> =~ emrth g = gaztb
dr \a a

1
/e"z+bdw=—e"z+b+c for a # 0
a



Integration (Chapter 15)

Likewise if n # —1,

i ; ntl | _ 1 n
dz (a(n+1) (ax +b) ) a(n+1)(n+1)(a1‘+b) X a

= (ax+b)"

B R

(ax + b)"+1

f —1
T 1) +c for n#

We can perform the same process for the circular functions:

%(sin(az +b)) = acos(ax +b)

/acos(am +b)dx = sin(ax + b) + ¢

a / cos(ax +b) dx = sin(axz + b) + ¢

So,

1
/cos(aac + b)dx = —sin(axz + b) + ¢ for a # 0.
a

1
Likewise we can show /sin(aa; + b)de = —— cos(ax + b) + ¢ for a # 0.
a

For a, b constants with a # 0, we have: Function Integral
eam+b l eaa:+b +c
n _ 1 (az +b)"t!
(ax+b)", n# -1 T +ec
cos(azx + b) ! sin(az +b) + ¢
a
sin(az + b) . cos(ax +b) + ¢
a
Example 11 ) Self Tutor
o 4 1
Find: a /(235 + 3)*dz — dx
1
2z + 3)° _L
:%x(w;)+c :/(1—2x)2dx
=L122+3)°+c¢ :
= Tolte + 3 IR CET L
=3 1

2

—/1—-2x+¢
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Example 12 ) Self Tutor
Integrate with respect to x:
a 2% 32 b 2sin(3xz) + cos(4x + 7)
a /(262’c —e %) dx b / (2sin(3x) + cos(4x + 7)) dz
—2(1)e? — (L)e ¥ +c =2 x —1cos(3z) + 1sin(4x +7) + ¢
— eyl e = —2cos(3z) + 1 sin(4z + ) + ¢

EXERCISE 15F

1 Find:
3 1 4
T — 10
d /(43: 3)"dx e /\/333 4dx f /mdaj
g /3(1 x)* dx h /mdx
2 Integrate with respect to x:
a sin(3z) b 2cos(—4z)+1 ¢ 3cos (%)
d 3sin(2z) —e " e 2sin(2z+ %) f —3cos(§ —x)
g cos(2z) + sin(2z) h 2sin(3x) + 5 cos(4z) i 1cos(8z) —3sinz
3 Find y = f(x) given % =+/2x — 7 andthat y =11 when z =8.
T
4 The function f(x) has gradient function f’(z) = L, and the curve y = f(z) passes through
. Vi—=x
the point (-3, —11).
Find the point on the graph of y = f(x) with xz-coordinate —8.
5 Find:
a /3(21: —1)%dx b /(:1732 —z)*dx c /(1 — 3z)3 da
d /(1—m2)2dx e /4\/5—xdx f /(a:2—|—1)3dx
6 Find:
a /(26’”—1—562”) dx b /(3653”_2) dx c /(67_3”) dx
x —xz\2 —x 2 . 5
d /(e +e %) dx e /(e +2)%dx f /(m (1_m)2> dx

7 Find an expression for y given that % = (1 —¢%)2, and that the graph has y-intercept 4.
X
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8 Suppose f'(z) = psin(gx) where p is a constant. f(0) = 1 and f(2r) = 0. Find p and
hence f(z).

9 Consider a function g such that ¢”(z) = —sin2z.
Show that the gradients of the tangents to y = g(x) when z =m and x = —7 are equal.

10 Find f(z) given f'(z) =2e¢2* and f(0) =

11 A curve has gradient function +/z + 1 e~ and passes through (1, 0). Find the equation of the
function.

- | DEFINITE INTEGRALS

Earlier we saw the fundamental theorem of calculus:

If F(x) is the antiderivative of f(z) where f(z) is continuous on the interval a < x < b, then the

b
definite integral of f(z) on this interval is / f(xz)dxz = F(b) — F(a).

/ f(z)dx reads “the integral from z =a to x =b of f(z) with respect to z”
or “the integral from a to b of f(x) with respect to z”.

It is called a definite integral because there are lower and upper limits for the integration, and it therefore
results in a numerical answer.

When calculating definite integrals we can omit the constant of integration c as this will always cancel out
in the subtraction process.

It is common to write F'(b) — F(a) as [F(m)]l;, and so / f(x)dx = [F(a:)]z = F(b) — F(a)

Earlier in the chapter we proved the following properties of definite integrals using the fundamental theorem

of calculus:
b a
/ f(z)dx = —/ f(z)dx

/ / f(z)dz, cis any constant
/f@m+/f M_/f
/a[f()+9 dx—/f d:c+/a g(z) dz
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Example 13

u) Self Tutor

Find:

a /13(m2+2)da:

EXERCISE 15G

Use questions 1 to 4 to check the properties of definite integrals.

1 1
b / 2" dx and / (—x") dx
0 0
2
c / 2% dx
0

4 4
1 Find: a / Vzdx and / (—/x) dx
1 1

1 2
2 Find: a / z? dx b / z? dx
0 1
2 3
3 Find: a / (2% — 4x) dx b / (x3 — 4z) dx
0 2
1 1
4 Find: a / z? dx b / Vv dr
0 0
5 Evaluate:
1 2
a / 23 dx b / (2 — z) dx
0 0

5
d/ cosx dx e

0

3 1 g
g —dx h

1 ® z

3

6 L 1
j —d k
! 9 V2 —3 * /0 €

2m
6 Find m such that / (2 —1)dx = 4.

m

sin z dx

1—x dzx

1
d / 322 dx
0

3
c / (23 — 4z) dx
0

c /01(352—1—\/5)dq:

=h

1
/ewd:c
0
/gx—B
4 VT
2
/(e“"—l—l)zda:
1
®

k

dx

sin(3x) dx
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T

7 a Use the identity cos®z = % + %cos(2:1:) to help evaluate / " cos? rdz.
0

K

b Use the identity sin®z = 2 — 1 cos(2z) to help evaluate / * sin? z da.
0

8 Evaluate the following integrals using area interpretation: Ly

a /03 (@) dz b /37 (@) da 2/_Y_f(m)
c /24f(x)dx d /07f(x)dx jc; ? Uz

9 Evaluate the following integrals using area interpretation: Ly
4 6 B
a / f(z)dx b / f(z)dx 2 y="/()
° 4 M
8 8 < , . >
O 2 4 6; 8
e [ s a [ @ R RRE
6 0 -2 —_—
Y

10 Write as a single integral:

a /24 f(x)d:r,+/47 f(x)dz b /13 g(:z:)dx—i—/: g(x)d:c+/: g9(z) da

3 6 6
11 a If / f(z)der =2 and / f(x)dz = -3, find / f(x) de.
1 1 3
2 6 6 4
b If / f(z)dx =5, / f(x)de = -2, and / f(x)de =7, find / f(z) dx.
0 4 0 2
1
12 Given that / f(z)dx = —4, determine the value of:
-1

a ) f(z)dz b / (24 f(z)) dx c / 2f(z) dz

1 -1 1

1
d k such that / kf(x)de =17
1

3
13 If g(2) =4 and g¢(3) =5, calculate / (¢'(z) — 1) dz.
2
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Historical note

Following the work of Newton and Leibniz, integration was rigorously formalised using limits by the
German mathematician Bernhard Riemann (1826 - 1866).

b
If f(z) >0 on theinterval a < 2 < b, we have seen that the area under the curveis A = / f(z) dx.

This is known as the Riemann integral.

Y y=f(z)

A Bernhard Riemann

Review set 15A

1 a Sketch the region between the curve y = IL and the z-axis for 0 < z < 1.

+ 22
Divide the interval into 5 equal parts and display the 5 upper and lower rectangles.
b Use the area finder software to find the lower and upper rectangle sums for Ff:;ék
n = 5, 50, 100, and 500.
L, T
¢ Give your best estimate for / a2 dz and compare this answer with 7. L ﬁ
0 €T
2 The graph of y = f(z) is illustrated: 4y

. . . . semi-circle
Evaluate the following using area interpretation: /

a /04f(a:)da: b AGf(:c)da;

2 —

0 2 4 6 T
—2
Y
3 Integrate with respect to x:
4
a — b sin(4z —5 c et 3
. (12~ 5)

4 Find the exact value of:

-1 z
a / V1 —3zdx b / cos (%) dx
-5 0

5 By differentiating y = v/22 — 4, find

/Ldz
\/x2—4 '
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b
6 Find the values of b such that / cosxdr = i, 0<b<m.
0 V2
7 Find y if:
W _ (22 1) b % — 400207
dx dx

8 Acurve y= f(x) has f"”(x) =182z +10. Find f(z) if f(0)=—-1 and f(1)=13.
9 If / el dy = Z, find a in the form Ink.
0

10 Suppose f”(z)=3z*>+2z and f(0)= f(2) =3. Find:
a f(z) b the equation of the normal to y = f(z) at =z = 2.

11 a Find (e® +2)% using the binomial expansion.

1
b Hence find the exact value of / (e 4 2) du.
0

Review set 15B

1 ys a Use four upper and lower rectangles to find rational
numbers A and B such that:

2
fl@)=4-2 A</(4—x2)dm<B.
0

b Hence, find a good estimate for

3 2
/ (4 — %) dz.
v 0
2 Find:

a /(2em+3)dw b /(f—%) da c /(3+e2“)2dx

3 Giventhat f'(x) =22 -3z +2 and f(1)=3, find f(z).

o
[}
]Y

3
. 1
4 Find the exact value of /2 Vore dz.
5 By differentiating (3z2 + z)3, find /(3:172 +z)2(6x + 1) d.
4
6 If / f(z)dxr =3, determine:
1

a /14(f(:c)+1)d:c b /12f(x)dm—[f(az)dx

7 Given that f”(x) = 2sin(2z), f'(§) =0, and f(0) =3, find the exact value of f(%).

8 Find di(efzm sinz) and hence find /2 [e7**(cosz — 2sinz)| da
X
0
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9 Find /(21: +3)"dx for all integers n # —1.

10 A function has gradient function 2./z + % and passes through the points (0, 2) and (1, 4).
x

Find a and hence explain why the function y = f(x) has no stationary points.

73a

2a
11 / (22 +az +2) dz = Find a.
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Applications of
integration

Contents:

A The area under a curve
B The area between two functions
€ Kinematics
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Opening problem

The illustrated curves are those of y = sinz and AY
y = 3sinx.

Things to think about: Co

. . ©
a Can you identify each curve? - !

5 W\: >
b Can you find the shaded area enclosed by C; and C,
for 0 <o <7w?

We have already seen how definite integrals can be related to the arcas between functions and the z-axis. In
this chapter we explore this relationship further, and consider other applications of integral calculus including
kinematics.

'THE AREA UNDER A CURVE

We have already established in Chapter 15 that:

If f(z) is positive and continuous on the interval
a < x < b, then the area bounded by y = f(x), the
z-axis, and the vertical lines © = a and x = b is

b b
given by A:/ f(z)dx or /ydﬂc.

Example 1 ) Self Tutor

Find the area of the region enclosed by y = 2z, the z-axis, =0, and x =4 Dby using:

a a geometric argument b integration.

4
a b Area:/ 2x dx
Area= 3 x4 x 8 0
.. 92 214
= 16 units = [x ]0
_ 42 _ 02
= 16 units?

EXERCISE 16A

1 Find the area of each of the regions described below by using:
i a geometric argument ii integration
=5, the z-axis, = —6, and z =0

y ==z, the z-axis, t =4, and z=5

y = —3x, the z-axis, x = —3, and z =0

2 60 T 9

y = —x, the z-axis, x =0, and =z =2



Applications of integration (Chapter 16) 439

Example 2 %) Self Tutor

Find the area of the region enclosed by y = x%2+1, the z-axis, = = 1,
and z = 2.

It is helpful to

2 sketch the region.
by Area:/ (2% + 1) dz
1
2
m3
y=a24+1 =|=+tz
N Pk
8 1
- - =(5+2)—(5+1
il 0 (G2 ()
v = 31 units®

2 Find the area of the region bounded by:

a y=22 thez-axis, and z =1

b y=sinx, the z-axis, =0, and z =7
¢ y==x3, thez-axis, z=1, and z =4
d y=e", the z-axis, the y-axis, and z =1 Use the graphing package
) ) to check your answers.
e the z-axis and the part of y =6 +x — 2 above the z-axis \
f theaxesand y=+v9—=
1 GRAPHING
g y=—, thez-axis, =1, and z =2 PACKAGE
x
1 . AN
h y=2- —, the z-axis, and z =4 |
vz
i y=e"+e*, the z-axis, z=—1, and =z =1
Example 3 ) Self Tutor

Find the area enclosed by one arch of the curve y = sin2z and the z-axis.

The period of y = sin2z is 27” =, so the first positive x-intercept is 3.

2
Ay The required area = / sin 2z dx
0
=sin 2z 3
v / = [%(— cos 235)] ’
0
o 5 T = z

= —% [cosZm}O
= —1(cosm — cos0)

=1 unit?

3 Find the area enclosed by one arch of the curve y = cos3z and the z-axis.
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Discovery

b
/ f(x)dx and areas

b
Does / f(z)dx always give us an area?
a

What to do:

1 1
1 Find / 2% dz and / 2% dz.
0 —1

2 Using a graph, explain why the first integral in 1 gives an area, whereas the second integral does not.

0
3 Find / 23 dr and explain why the answer is negative.

-1

0 1 1
4 Show that / 22 dr + / 2 dr = / 2 dux.
-1 0 —1

=il
5 Find / 23 dzr and interpret its meaning.
0

6 Suppose f(x) is a function such that f(z) <0 forall a <z <b. Suggest an expression for
the area between the curve and the function for a < x < b.

" /| |THE AREA BETWEEN TWO FUNCTIONS

If two functions f(z) and g(x) intersect at
x=a and z =05, and f(z) > g(z) for all
a < x < b, then the area of the shaded region
between their points of intersection is given by

b
A= / 1565 = )

Alternatively, if the upper and lower functions
are y =y, and y =y, respectively, then
the area is

b
A:/ [yU _yL]dm'

We can see immediately that if f(z) is the
z-axis f(xz) =0, then the enclosed area

is /ab [—g(z)]dx or —/abg(a:) dx.
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Example 4

) Self Tutor

b
Use / [y, — y,]dz to find the area bounded by the z-axis and y = z? — 2.

The curve cuts the z-axis when y =0
22 —22x=0
z(r—2)=0
z=0or2
the z-intercepts are 0 and 2.

2
Area = / [y, —y.]dz
0

:/02[0—(3:2—2x)]dx

(-9~ 0)

the area is % units?.

Example 5

Ay

A

] yL:x2—2x

o) Self Tutor

Find the area of the region enclosed by y =z +2 and y = 2%+ — 2.

y=x+2 meets y=a>+z—2
where 2?41 —-2=x+2

2> —4=0
(x+2)(x—2)=0
=42
by
y=a’4+2x—2

. the area is 102 units?.
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Example 6 ) Self Tutor

Find the total area of the regions contained by y = f(z) and the z-axis for f(z) = 23 + 22% — 3x.

f(x) =2 + 22 - 3z 5 ) I
= z(2* + 2z — 3) y=att 3
=a(z—1)(z +3)

y = f(z) cutsthe z-axisatO0, 1, and —3.

Total area
0 1 3 o1 %
:/ ($3+2x2—3x)daz—/ (2% + 222 — 32) dx
-3 0 Y
I ) N AN R v b
|4 3 P 4 3 2 |,

-1~ (-4 -0)
= 112 units®

EXERCISE 16B

1 Find the exact value of the area bounded by:
a the z-axis and y=2%+2 -2
the z-axis, y=e * —1, and = =2

the z-axis and the part of y = 322 — 8z + 4 below the z-axis

= cosz, the z-axis, x =Z, and = = 3&
2 2

y =23 —4x, the z-axis, v =1, and =2

= 0 QQ O

jus

y =sinx — 1, the z-axis, x =0, and = = 3

2 Find the area of the region enclosed by y = 2% — 2r and y = 3.

3 Consider the graphs of y =2z —3 and y = 22 — 3z.
a Sketch the graphs on the same set of axes.
b Find the coordinates of the points where the graphs meet.
¢ Find the area of the region enclosed by the two graphs.

4 Determine the area of the region enclosed by y =/ and y = 2%
5 a On the same set of axes, graph y = e* —1 and y = 2 — 2e~", showing axes intercepts and
asymptotes.

—X

Find algebraically the points of intersection of y =e”* —1 and y =2 — 2e
¢ Find the area of the region enclosed by the two curves.

6 Find the area of the region bounded by y = 2e®, y = e?*, and z = 0.

7 On the same set of axes, sketch y =2z and y = 422
Find the area of the region enclosed by these functions.
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8 Sketch the circle with equation 22 + 3% = 9.
a Explain why the upper half of the circle has equation y = v/9 — z2.

3
b Hence, determine / V9 — a2 dx without actually integrating the function.
0

9 Find the area enclosed by the function y = f(z) and the x-axis for:
a f(x)=12°-9z b f(z)=—z(z—2)(z—4) ¢ f(z)=a"—52%+4.
10 Answer the Opening Problem on page 438.

11 a Explain why the total area shaded is not by

7
equal to / f(z)dx.
1

. . 1 E
b Write an expression for the total shaded 0 / 3\/5 7\ ;

area in terms of integrals.

12 y

Yy
A E Y= % + %cos(Q:r).
\ % a Identify each curve as C; or Cs.
- B\C/D > b Determine the coordinates of A, B, C, D, and E.

The illustrated curves are y = cos(2x) and

¢ Show that the area of the shaded region is 7 units?.
Co

13 Explain why the area between two functions f(z) and g¢g(z) on the interval a < z < b is given by

b
A= / () — ()] do.

14 The shaded area is 1 unit?. 15 The shaded area is 6a units®.
Find b, correct to 4 decimal places. Find the exact value of a.
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" [KINEMATICS

DISTANCES FROM VELOCITY GRAPHS

Suppose a car travels at a constant positive velocity of 60 kmh~! for 15 minutes.

We know the distance travelled = speed x time
=60 kmh™! x
=15 km.

h

1
1

When we graph velocity against time, the graph is a horizontal
line, and we can see that the distance travelled is the areca
shaded.

So, the distance travelled can also be found by the definite
1

integral /4 60 dt = 15 km.
0

Now suppose the velocity decreases at a constant rate, so that
the car, initially travelling at 60 kmh~!, stops in 6 minutes or
- hour.

In this case the average speed is 30 kmh~!, so the distance
travelled =30 kmh™" x 5 h
=3 km

But the triangle has area = % % base x altitude

3 X 4 x60=3

4velocity (kmh™1)
v(t) =60
60 S
(0) i time (¢ hours)
v

4
60

bvelocity (kmh~1)

v(t) =60 — 600t

1 time

' 10 (¢thours)

So, once again the shaded area gives us the distance travelled, and we can find it using the definite integral

1

/ (60 — 600¢) dt = 3.
0

These results suggest that:

For a velocity-time function v(¢) where v(¢) > 0 on the

interval t; <t < to,

ta
distance travelled = / v(t) dt.
t1

T

= ol t ts %

If we have a change of direction within the time interval then the velocity will change sign. We therefore
need to add the components of area above and below the ¢-axis to find the total distance travelled.
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Example 7 ) Self Tutor

The velocity-time graph for a train journey is
illustrated in the graph alongside. Find the total 60
distance travelled by the train.

b (kmh—1)

30

Total distance travelled
= total area under the graph
= area A + area B + area C + area D 4 area E
= 3(0.1)50 + (0.2)50 + (22£22) (0.1) + (0.1)30 + £(0.1)30
=25+10+4+3+1.5
=21 km

01 02 01 01 01

EXERCISE 16C.1

1A runner has the velocity-time graph shown. Find the " kvelocity (ms—1)
total distance travelled by the runner. 2
6
4
2
“Oo 5 10 15 20 time (s)
2 A velocity (kmh—) A car traYels along a straight road with the velocity-time
60 function illustrated.
40 a What is the significance of the graph:
i above the t-axis
20 i axis?
¢ (h) ii below the t-axis?
70| 01 02 03 0405 06,07 b Find the total distance travelled by the car.
—20 L/

¢ Find the final displacement of the car from its
starting point.

3 A cyclist rides off from rest, accelerating at a constant rate for
3 minutes until she reaches 40 kmh~!. She then maintains a
constant speed for 4 minutes until reaching a hill. She slows
down at a constant rate over one minute to 30 kmh~!, then
continues at this rate for 10 minutes. At the top of the hill
she reduces her speed uniformly and is stationary 2 minutes
later.

a Draw a graph to show the cyclist’s motion.
b How far has the cyclist travelled?
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DISPLACEMENT AND VELOCITY FUNCTIONS

In this section we are concerned with motion in a straight line.
For some displacement function s(t), the velocity function is v(t) = s'(¢).

So, given a velocity function we can determine the displacement function by the integral

s(t):/'v(t) dt

The constant of integration determines the initial position on the line where the object begins.

Using the displacement function we can determine the change in displacement in a time interval ¢ <t < ¢y
using the integral:

to
Displacement = s(t2) — s(t1) = / v(t) dt

t1

TOTAL DISTANCE TRAVELLED

To determine the total distance travelled in a time interval ¢; <t < t2, we need to account for any changes
of direction in the motion.

To find the total distance travelled given a velocity function v(t) = s'(t) on t; <t < ta:
e Draw a sign diagram for v(¢) so we can determine any changes of direction.
e Determine s(t) by integration, including a constant of integration.
e Find s(t1) and s(¢2). Also find s(¢) at each time the direction changes.
e Draw a motion diagram.
e Determine the total distance travelled from the motion diagram.

VELOCITY AND ACCELERATION FUNCTIONS

We know that the acceleration function is the derivative of the velocity function, so a(t) = v'(t).

So, given an acceleration function, we can determine the velocity function by integration:

v(t) = / a(t) dt

Summary
differentiate differentiate
ds dv d3s
s(t v(t) = — a(t) = — = —
(t) == bl=—=—
displacement velocity acceleration

DA

integrate integrate
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Example 8 ) Self Tutor
A particle P moves in a straight line with velocity function v(t) =2 — 3t +2 ms~1
a How far does P travel in the first 4 seconds of motion?
b Find the displacement of P after 4 seconds.
a v(t)=s(t)=t>—3t+2
=(t-1)(t-2)
the sign diagram of v is:
g g | n _ L
| 1 2 t
0
Since the signs change, P reverses direction at ¢ =1 and ¢ =2 seconds.
3 2
Now (1) :/(t2 — 3t +2)dt = % - %—l—%—l—c
Hence s(0) =c s()=3-3+2+c=c+3
s2)=8-6+4+c=c+2 s4)=%-24+8+c=c+53
Motion diagram: - >
e .
c—i—% c—i—% c+ 5%
total distance travelled = (c+ 2 —¢) + (¢ + 2 — [c+ 2]) + (¢ + 53 — [c+ 3])
_ 5,5 _2 12
=5tT6 - 31t5 3
= 5% m

b Displacement = final position — original position

=s(4) — s(0)
=c+5%—c
:5%m

So, the displacement is 5% m to the right.

EXERCISE 16C.2
1 A particle has velocity function v(t) =1 — 2t cms™
initially 2 cm to the right of O.
a Write a formula for the displacement function s(t).
b Find the total distance travelled in the first second of motion.
¢ Find the displacement of the particle at the end of one second.

! as it moves in a straight line. The particle is

2 Particle P is initially at the origin O. It moves with the velocity function v(t) =t —t —2 cms™L.

a Write a formula for the displacement function s(¢).
b Find the total distance travelled in the first 3 seconds of motion.
¢ Find the displacement of the particle at the end of three seconds.

3 An object has velocity function v(t) = cos(2t) ms~'. If s(§) =1 m, determine s(%) exactly.
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4 The velocity of a moving object is given by v(t) = 32+ 4t ms~ 1.

a If s=16 m when ¢ =0 seconds, find the displacement function.
b Explain why the displacement of the object and its total distance travelled in the interval 0 < ¢ < ¢4,

t1
can both be represented by the definite integral / (32 + 4t) dt.
0
¢ Show that the object is travelling with constant acceleration.

5 A particle moves along the z-axis with velocity function s'(t) = 16t — 4¢> units per second. Find the
total distance travelled in the time interval:
a 0<t<3 seconds b 1<t<3 seconds.
6 A particle moves in a straight line with velocity function v(t) = cost ms™1.
a Show that the particle oscillates between two points.
b Find the distance between the two points in a.

7 The velocity of a particle travelling in a straight line is given by wv(t) = 50 — 10e~%-% ms~!, where

t >0, tin seconds.
State the initial velocity of the particle.

Find the velocity of the particle after 3 seconds.

How long will it take for the particle’s velocity to increase to 45 ms~1?
Discuss v(t) as t— oo.

Show that the particle’s acceleration is always positive.

Draw the graph of v(t) against .

0o =-» O Q O T

Find the total distance travelled by the particle in the first 3 seconds of motion.

Example 9 ) Self Tutor

A particle is initially at the origin and moving to the right at 5 cms™!. It accelerates with time
according to a(t) =4 — 2t cms™2.
a Find the velocity function of the particle, and sketch its graph for 0 <t < 6 s.

b For the first 6 seconds of motion, determine the:

i displacement of the particle ii total distance travelled.
a o(t) = / a(t) dt = / (4 20) dt ot
=4t—t*+¢
But v(O 5, so ¢=5 5

)=
Cv(t)=—t*+4t+5 cms™!

b / / (—t2 + 4t +5) dt
—3t* +2t> + 5t + ¢ cm 0
But s(0)=0, so ¢=0
s(t) = —3t* + 22 + 5t cm

i Displacement = s(6) — s(0)
= —1(6)> + 2(6)* + 5(6) -7
=30 cm
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ii The particle changes direction when t =5 s.
Now s(5) = —3(5)% +2(5)% 4+ 5(5) = 335 cm

Motion diagram: ‘ﬂ

30 333
0 t=6 t=5

(=3

t

.. the total distance travelled = 33% + 3%

2
= 36§ cm

8 A particle is initially stationary at the origin. It accelerates according to the function

a(t) = _ 2 ms2

(t+1)3
a Find the velocity function v(t) for the particle.
b Find the displacement function s(¢) for the particle.
¢ Describe the motion of the particle at the time ¢ = 2 seconds.

9 A train moves along a straight track with acceleration o 3 ms~2. The initial velocity of the train

is 45 ms~ !,

a Determine the velocity function v(t).

60
b Evaluate / v(t) dt and explain what this value represents.
0

10 An object has initial velocity 20 ms~! as it moves in a straight line with acceleration function
t
4e 20 ms~2
a Show that as ¢ increases the object approaches a limiting velocity.
b Find the total distance travelled in the first 10 seconds of motion.

Review set 16A

1 Write an expression for the
total shaded area.

4
2 y Find: a / f(z)dx
0
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3
3 Does / f(z) dx represent the area of 4 Determine k if the enclosed region has
=il 1 a2
. area 5z units®.
the shaded region? 3
Explain your answer briefly. I
Y - ~
! ) y=k
1l ‘ 1 3/ y=g’
- (0} G
- 0 ;IE
\j

Find the area of the region enclosed by y = 22 +42 +1 and y = 3z + 3.

A particle moves in a straight line with velocity v(t) =2 — 6t +8 ms~!, for ¢ > 0 seconds.
Draw a sign diagram for v(t).

Describe what happens to the particle in the first 5 seconds of motion.

After 5 seconds, how far is the particle from its original position?

2 060 T 9

Find the total distance travelled in the first 5 seconds of motion.

Determine the area enclosed by the axes and y = 4e” — 1.

8 A particle moves in a straight line with velocity given by wv(t) = sint ms~!, where ¢t > 0
seconds. Find the total distance travelled by the particle in the first 4 seconds of motion.

Review set 16B

1 Attime t = 0 a particle passes through the origin with velocity 27 cms™1.

t seconds later is 6 — 30 cms™2.

Its acceleration

a Write an expression for the particle’s velocity.
b Calculate the displacement from the origin after 6 seconds.

2 a Sketch the graphs of y = %— % cos2x and y = sinz on the same set of axes for 0 < = < 7.
Verify that both graphs pass through the points (0, 0) and (Z, 1).
Find the area enclosed by these curves for 0 <z < 3.
3 Find a given that the area of the region between y = e* and Yy
the x-axis from =0 to z =a is 2 units?. y=e
Hence determine b such that the area of the region from
r=a to z=> is also 2 units?.

A

4 A particle moves in a straight line with velocity v(t) = 2t — 3t> ms™!, for ¢ > 0 seconds.
a Find a formula for the acceleration function a(t).
b Find a formula for the displacement function s(t).

¢ Find the change in displacement after two seconds.
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5 OABC is a rectangle and the two shaded 6 The shaded region has area % unit?.
regions are equal in area. Find k. Find the value of m.

y=sinz

= /lo m w\%c

7 Find the area of the region enclosed by y = = and y = sin <7r2—w)

8 A boat travelling in a straight line has its engine turned off at time ¢ = 0. Its velocity at time

100 _q

t seconds thereafter is given by v(t) = ——— ms

- O Q 06 T 9

(t+2)2
Find the initial velocity of the boat, and its velocity after 3 seconds.
Discuss v(t) as t — oo.
Sketch the graph of v(¢) against .
Find how long it takes for the boat to travel 30 metres from when the engine is turned off.
Find the acceleration of the boat at any time ¢.

3
Show that % = —kv?, and find the value of the constant k.
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g 1 The set of all real numbers = such that z is less than or
equal to 1, or greater than 2.
ii not possible iii infinite
ANSWERS v, o
= T 5 %
h i The set of all real numbers x such that z is less than 2,
EXERCISE 1A or greater than or equal to 1. (So, A is the set of all real
1 as5€eD b 6¢G c d¢ {a e i, o u} numbers.)
d {2,5} C {1,234, 5,6} _ii not possible iii infinite
iv
e {3,8,6}¢{1,2,3,4,5,6} - ‘ >
< 0 -
2 a i {9 i {56,789, 10, 11,12, 13}
b io ii {1.2,3,4,5,6,7, 8 3 aj=§16£:*100<x}<100}
- . . b ={x €R:z > 1000
c 1{1,357t=A 1ii {1,23,45,6,7,89} =B c A={zcQ:2<z<3}
3 5 b 6 2 d 9
a ¢ 4 a A={zcZ:-2<z<3}
4 a true b true c true d true b A={zecZ:z< -3}
e false f true g true h false c A={z€R:-3<z<2}
5 a finite b infinite ¢ infinite d infinite d A={zcR:1<z<3Ux>5}
6 a:irue btrued ¢ false d true 5 a ACB b A¢ B ¢ ACB d ACB
7 a disjoint b not disjoint 8 true
! ! ! e ACB f A¢B
9 a 15subsets b 27 —1, neZt ) )
6 a neither b open ¢ neither d open
EXERCISE 1B e e closed f neither
1 a finite b infinite ¢ infinite d infinite 7 a There are infinitely many rational numbers within any given
e infinite f infinite g infinite interval, so we cannot represent Q as a series of dots like we
2 a i The set of all integers 2 such that z is between —1 and can with Z. We cannot represent Q with a continuous line
7, including —1 and 7. either (like we do with R), as this would imply that irrational
i {~1,0,1,234,56,7} il 9 numbers are part of Q.
v b i the set of positive real numbers, o—>
-l L
LS ® e s s e {weRia>0) T
-1 0 1 2 3 4 5 6 7 T
b i The set of all natural numbers = such that z is between ii the set of positive real numbers r——
-l
—2 and 8. and zero, {z €R:z > 0} 1 0 1
ii {1,2,3,4,5,6, 7} iii 7
iv
- v e % EXERCISE 1C
1 2 3 4 5 6 7% o o
1 a infinite b infinite
¢ i The set of all real numbers = such that x is between Ly
0 and 1, including O and 1.
ii not possible iii infinite r4y=1
e 1
iv - >
_ “ “ _ ol 1 T
h 0 1 ]
d i The set of all rational numbers x such that = is between v
5 and 6, including 5 and 6.
ii not possible iii infinite ¢ infinite d infinite
iv cannot be illustrated v, LY
e i The set of all real numbers x such that x is between A
—1 and 5, including —1. ‘*1 i
L not possible iii infinite - ol = >
iv “
® o b
- I I - o
—1 5 T Yoe+g=1%
f i The set of all real numbers x such that = is between o ) o
3 and 5 (including 5), or greater than 7. 2 a infinite b finite ¢ infinite
il not possible ili infinite 3 a i The set of all points of intersection between the line and
iv the circle. 4 . . . ‘
< ! ! | L L L > il The set of all points that lie on either the straight line or
3 4 g 6 7 8 * the circle.
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Answers

There are two points of
intersection between the
straight line and the circle.

There is one point of
intersection between the
straight line and the circle
(that is, the straight line is
a tangent to the circle).

The straight line and the
circle do not intersect.

EXERCISE 1D

1

C' = {consonants} b C'={zcZ:xz>0}
C'={z€Z:z>-4} d ' ={z€Q:2<z<8}

{2,3,4,5,6,7t b {0,1,8} ¢ {5 6,7, 8}

{0, 1, 2, 3, 4} e {5,6,7} f {2,3,4,5,6,7, 8}
{2,3, 4} h {0, 1,2, 3, 4,8}

9 b 11 4 a false b true

{1, 2, 10, 11, 12}
{1,8,9, 10, 11, 12}
{1,2,8,9, 10, 11, 12}

b {1,2 3, 4,12}
d {3.4,5,6,7}
f {8,9,10, 11}

{1,2,5,6,7,809,10, 11, 12}  h {2, 10, 11}
[0, o0) b (—oc0,1) ¢ (—o0,3)U][2, o0)
(—o0, =5] U (7, o0) e [1,3)

(—o0, =5) U [0, 1]

EXERCISE 1E "

1

2 2T L QAT HL QLT OH Q0D

|-

P={2,3,51711,13,17,19,23} b {2,5, 11}
{2,3,4,5,7, 11, 12, 13, 15, 17, 19, 23}

12=94+6-3

P={1,24,714,28}, Q={12 45,8, 10,20, 40}
{1,2,4} ¢ {1,2,4,5,7, 8,10, 14, 20, 28, 40}
11=6+8-3

M = {32, 36, 40, 44, 48, 52, 56}, N = {36, 42, 48, 54}

{36,48} ¢ {32, 36, 40, 42, 44, 48, 52, 54, 56}
9=7+4-2
R={-2-1,01,234}, S={0,1,23 4,5, 6}
{0,1,2,3,4) ¢ {-2,-1,0,1,2,3,4,5,6}
9=7+775 v
C={-4 -2, -1}
D= { —5, —4, -3, -2, —1}
{—4, 1} ¢ {-7, —6,—5, -4, -3, -2, —1}
7= +7 4 v
P=1{1,234612}, Q=1{1,23609,18},
={1,3,9, 27}
i {1,2,3,6} i {1,3} i {1,3,9}

iv {1,2,3,4,6,9, 12, 18}
vi {1,2,3,6, 09,18, 27}

v {1,2,3,4,6,9,12, 27}

c i {L3} i {1,23,4,6, 0,12, 18, 27}
7 a A={4,8, 12, 16, 20, 24, 28, 32, 36}
= {6, 12, 18, 24, 30, 36}, C = {12, 24, 36}
b i {12 24, 36} il {12, 24, 36}
i {12, 24, 36} iv {12, 24, 36}
v {4,6,8, 12, 16, 18, 20, 24, 28, 30, 32, 36}
€ 12=9+6+3-3-3-3+3 v
8 a A=1{612 18 24,30}, B={L23, 56,10, 15, 30}
C ={23,5,7 11, 13,17, 19, 23, 29}
b i {630} ii {235} iii & iv o
v {1,2,3,5,6,7, 10,11, 12, 13, 15, 17, 18, 19, 23, 24,
29, 30}
¢ 18=5+8+10-2-3-04+0 v
EXERCISE 1F.1
1 a b
A'@ ( )
3 3 3
c d
A e B
% s %
2 a A={1,3,5709} c
B=1{2,3,51} 4 B
b ANB = {3,5,7} A e
AUB ={1,2,3,5,7,9} 8
ol O 10
3 a A={1,23,6} c
B=1{1,3,9} A B
b ANB ={1,3}
AUB=1{1,2,3,6,9} 4
2 5 7 8
4 a P={4,8, 12, 16,20, c
24, 28}
Q = {6, 12, 18, 24}
b PNQ = {1224} 2
PUQ={4,681216
18, 20, 24, 28}
5 a R=1{2357 11,13, 17, 19, 23, 20}
S ={4,6,8,0,10, 12, 14, 15, 16, 18, 20, 21, 22, 24,
25, 26, 27, 28}
b RNS=0
Rus ={2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29}
Cc

R

1
9 10 12 14
15 16 820 21
2 25
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{b,d, e, h} b {e f, h, i, j}
{a, b, ¢, d, g, k} e {e, h}

¢ {a, ¢ f, 91 J, k}
f {bd e f h i j}

g {a,c, 9.k} h {a,bcd [ g1 j, k}

7 a

1 a

i {a,b,cd h,j}
iti {a, b e f, il}

v {a,b,c d e f, g hj k}

vii {a}
i12 il 12
n(AUBUCQC)

ii {a,c,d, e f,g, k}
iv {a,c, d}
vi {a,e, f}

viii {a,b,c,d, e, f,g, h.i, j, k 1}

=n(A)+n(B)+n(C)—n(ANB) —n(ANC)
—n(BNC)+n(ANBNC)

EXERCISE 1F.2

Cleel]
oogce

S

S+

b

W

l>> .>> l:u .:>

» >lele
FlreEe e

S
Q
&




456  Answers
c d
@ @
é ¢ é ¢
e f
@ @
é ¢ é ¢
h
| @ @
é © é ¢
I @ ’ @
% ¢ % ¢
k |
@ @
é ¢ é ¢
EXERCISE 1G e
1 a7 b 14 c 14 d 7 e 5 fo9
2 ab+ec b c+d cb
d at+b+ec e atc+d f d
3 a i 2a+4 il 4a+4 iii 3a—5 iv 5a—1
b ia=6 i a=32
Since a € N, there cannot be 31 elements in &, but it is
possible to have 29 elements.
5 al5 b4 6 al8 b6 7 a7 b 23
EXERCISE 1H I
1 a 2 a
LH @ Br R @ Umb
3 2
% (3) 2 (2)
b 19 i3 iii 3 b 14 ii2

3 13 players 4 20 people
5 a b 116
B ¢ ii 33
@ iii 14
au iv 7
“ P (14)
6 a 29 b 6 c 1 d 11
7 a3 b 5 c 5 d 21
8 a3 b 4 9
REVIEW SET 1A I
1 a S={34567} b5 c 31
2 a yes b yes ¢ no d yes
3 a X’ = {orange, yellow, green, blue}
b X' ={-5 -3 -20,1,2 5}
c X' ={zeQ:z> -8}
d X' ={z e (—oco0, —=3)U[L, 4]}
4 a {zreR:—-2<z<3}, neither
b {zx €R:z <3}, open
5 a Ay b
- o > -
y=2
A\
6 a b
M M
€ €
c
M
€
7 a i{springbdokuwateuct
ii {T5 b, k} iii {g, i, M, 0, P, 5}
b i {the letters in ‘springbok’ or ‘waterbuck’}
ii {the letters common to both ‘springbok’ and
‘waterbuck’}
iii {the letters in ‘springbok’ but not ‘waterbuck’}
c

A

B
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8 a i {1,23,4,6,8, 12,24} c
ii {1,2,3,5,6,10, 15, 30 ii {1,2,3,6
_"{ } i { 4 A B 3.6 7 9 11
iv {1,2,3,4,5,6, 8, 10, 12, 15, 24, 30} 12 13 14 15 16
b 27 29 28 23 0 17 18 19 21
Q 22 23 24 25 26
26 921 40 27 28 29 30 31
25 20 8 32 33 34 35 36
. 19 37 38 39
18
17 ¢
¢
12 a1l b 7 c 15
9 a b i72
S H ii 39 EXERCISE 2A.1
i 268 1ade 2 a,b,cegi
3 No, for example (0, 4) and (0, —4) satisfy the relation.
(296)
8 EXERCISE 2A.2
1 acf
10 8 11 a 9 b 7 c 17

12 a P={1,3,57,9} ¢
Q=1{2,4,6,8, 10}
b They are disjoint.

P

REVIEW SET 1B I

b false d false e false

{z€Z:-4<z<T7}

1 a true c true

i {zeR:5<ae<12} i
iii {xeN:z>45}

b i infinite

2 a

ii infinite

ii finite

3 o, {1}, {3}, {5}, {1, 3}, {3, 5}, {1, 5}, {1, 3, 5}
4 a i {2,46,8 b
. { } A B
ii {2, 4,8}
iii {3,5,7, 9}
3 9
gl 7
5§ a o b s+t
6 a neither b closed ¢ neither

a i The set of points which lie on both A and B (that is, the
point(s) of intersection of line A and line B).

i The set of points which lie on line A or line B.

b No. If the lines are coincident (so, A and B describe the
same line), then A N B will be infinite.

¢c n(ANB)=0or1l

8 acC b (ANB)U(ANC) or AN(BUC)
9 a b i 27
M 3 i 8
@ iii 14
4
« (4)
10 4
11 a A={1,24,58,10,20,40}, B ={1,2,4,5,10, 20}
b BCA

2 a not a function b function, one-one

¢ function, not one-one

3 a i $13 ii yes iii yes
b 1 no il no
EXERCISE 2B
1 a2 b 2 c-16 d —68 e if
2 a-3 b 3 c 3 d -3 e 13
3 a il i —1 b z=—-4
4 a 7-3a b 7+ 3a ¢ —3a—2 d 10-3b
e 1—3x f 7—3x—3h
5 a 22 +192+43 b 222 — 11z +13
c 2x2 -3z —1 d 2244322 —1
e 224 — 22 -2 f 222 + (4h +3)z +2h% +3h — 1
- 7 = 3 aza 4
6 a i —3 i —3 il —3
2
b z=4 TET g g=2
r—2 5
7 f is the function which converts z into f(x) whereas f(x) is the

value of the function at any value of x.

8 a V(4) = 6210, the value in dollars after 4 years
b t = 4.5, the time in years for the photocopier to reach a
value of 5780 dollars.
¢ 9650 dollars

9 Y 10 f(z) = —-2z+5
11 a =3, b=-2

12 ¢ =3, b= -1,
c=—4

EXERCISE 2C I
1 a Domain= {z:z > —1}, Range= {y:y < 3}

b Domain = {z: —1 <z <5}, Range={y:1<y<3}
Domain = {x :  # 2}, Range = {y:y # —1}
Domain = {z: x € R}, Range = {y:0<y < 2}
Domain = {z : x € R}, Range = {y:y > —1}

Domain = {z : x € R}, Range = {y:y < %}
Domain = {z : > —4}, Range = {y:y > —3}

0o = O 2 O



458

Answers

o T

-0 2 060 T 9

Domain = {x : x € R}, Range = {y:y > —2}

Domain = {z : x # +2},

Range = {y:y < —1 or y > 0}

f(x) defined for > —6, Domain = {z : z > —6}

f(z) defined for = # 0, Domain = {z : z # 0}

f(x) defined for = < 3, Domain = {z:z < 3}

z € R}, Range ={y:y € R}

z € R}, Range = {3}

z > 0}, Range = {y:y > 0}

x # —1}, Range = {y:y # 0}

x>0}, Range= {y:y <0}

x # 3}, Range = {y:y # 0}

Domain = {z : > 2}

Range = {y : y > 0}

Domain = {z :
Domain = {x :
Domain = {x :
Domain = {x :
Domain = {x :
Domain = {x :

Domain = {z : z # 0}
Range = {y : y > 0}

Domain = {z :

x
Range = {y:y

VoA

(=N
-

Domain = {z : z € R}
Range = {y:y > 72%}

Domain = {z : x € R}
Range = {y: y > 2}

Domain = {z : € R}

. 25
Range = {y:y < 15

h Y Domain = {z : = # 0}

Range = {y:y < —2

. ol .2 or y > 2}
(-1,-2) v
Y=+ —

Domain = {z : = # 2}
Range = {y : y # 1}

i Domain = {z : € R}

Range = {y : y € R}

k Domain = {z : & # —1
y and = # 2}
Range = {y: y < %

or y > 3}

1 Domain = {z : = # 0}
Range = {y 1y > 2}

m Domain = {z : z # 0}

Range = {y:y < —2

or y > 2}

n Y, Domain = {z : € R}

Range = {y : y > —8}

- 0 -
Vs

y=a*+42% - 16z + 3

EXERCISE 2D.1

2 8
i1 a5 b5 ¢4 d4 e6 fO0 g3 h =
2 al b 6 c 4 d 3
3 a2 b —4 c —6 d -5

EXERCISE 2D.2 I
1 a z=43 b no solution cz=0

d z=4o0r -2 e z=—lor7 f no solution
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gz=1lorg
1
2 a T=—7o0r3
-5
T=73

1 a

h x=0o0r3 |95=f20r1—54
4 -1

bx_76or7§ cz=3

e r=0or 2 fz=—-2o0r0

y
y=1f(z)l
y=f(z

2 function d

4 a
5 a
c
e

=Y

3 {y:0<y<6}

=Y

false b true c ftrue d false

y b

y=lal

- () ~

Yy d Y,
y=16—2z| y=1[3z+1|

6 1

- o[ 3 e - —1fo e

Y f

10
y =10 — 4z|

- ol 2 ]

EXERCISE 2E

1 a5—2 b —2x—-2 c 11

2 ab—=z b 1l1-=x c 4+zx

3 a 25z —42 b V8 c —7

4 f9(x)) = (2-2)% 9(f(z)) =2 —2?,
Domain = {z : € R}, Domain = {z : z € R},
Range = {y : y > 0} Range = {y : y < 2}

5 a (fog)(x)=6x—4 b w:—%

6 a i2%2-6zx+10 i 2 - x? b x=+s

7 a Let =0, . b=d andso

ar+b=cxr+b
ax = cx forall x

Let =1, . a=¢c
(fog)(z)=[2a]lx+[2b+3] =1z +0 forallz

2a=1 and 2b4+3=0
Yes, {(g0 f)(z) = [2a]z + [3a + b]}
(fog)(@) = V1—a?
b Domain = {x: —1<z <1}, Range={y:0<y<1}

-3

o

EXERCISE 2F
1 a

-“— -l L
2 -1 3
¢ + — + d + +
-« -« p
0 2 1
e f
- -
-2 -2 0 2
. h
& - i+ + + —
-+ -l L
0 -1 2

i i ol e i R +: = to
-3 0 4 1 2
k : : 1 : :
— i+, -+ I B it
-l -«
-1 0 3 -2 -1 1 2
2 a b
+ — + + — +
-l 1 ey -l Ly
—4 2 0 3
¢+ - 4 d 4+ -
B e e -1 L
) 0 -1 3
€ — + - f + - +
-1 <—‘—‘—>1 T
3 3 B 5
g + + h + +
«-— Ll - e
-2 3
i _ _
-7
—4
3 a 4 - 4 A
-l 7 - L
-2 1 -3 0
[ _ + _ d _ + _
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e + - 4 f + it g Domain of f(x) is
-— T, -— Ty
0 2 0 35 {z:z>0}
g h Range of f(z) is
-—t -—t =t {y:y <3}
0 1 -1 0
Domain of f~1(z) is
i+ - - i + - - {z:2<3}
-~ -
-2 1 3 01 2 Range of f~1(z) is
k + . | 4 P {y T 0}
- — [ — . . o s
0 2 ~° 3 9 3 v h The function does not have an inverse, as it is not one-one.
2
i y Domain of f(z) is
4 a + - iy b _oai_ ‘\ {z: 2z €eR}
-—Ll -—Ll 1 T .
—4 -1 i -1 0 1 ’ 2 Range of f(z) is
« oL, . {v:yeR}
¢ L - 2%, T
4;('-]—%> x . . Domain of f~1(z) is
= by z:x R
=y w=fw L !
Range of f~1(z) is
{y:yeR}
Domain of f(x) is 2 function i 3 Range ={y:—-2<y<3}
{z:-2<z2<0} 4 a b i y
Range of f(z) is
{y:0<y<5}
Domain of f~1(z) is
{z:0< z <5}
Range of f~1(z) is
{y:—2<y<0}
b Ay Domain of f(z) is
',Z/':T {z: 2 <0}
f() yd Range of f(x) is s 4
v {viy>4}
. ol 4 z Domain of f~1(z) is
x> 4
Fr— feza
\ Range of f~1(x) is
{y:y <0}
¢ The function does not have an inverse, as it is not one-one.
d Domain of f(x) is
{z:z R}
Range of f(z) is c
{y:yeR}
s Domain of f~1(zx) is
y=z S| {z:z R}
Range of f~1(z) is
{y:yeR}
e The function does not have an inverse, as it is not one-one. Ny 6
f Domain of f(z) is A
{z:z R}
Range of f(z) is 6 f(x) is the same as 7
{y:y>0} (F=H (=)
Domain of f~1(z) is -
{z :z >0} 'T
y=u fi@) Range of f~1(x) is

{y:y eR}
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1 1 -2 3—4
8 f7la)=~ and f(x)==~ .. f=f"" 11 a fl(2) =" b [ (2) =
T T 4 5
f is a self-inverse function 12 a f(-3)=(-3)2=9 b 169 c r—_4
9 a fl(z)=2x+2
. ((f) @) (o f)(@) -9 =165 =
1 of— xr) = n ~To Xr) =x
© o 10 13 (foh V(@) = (ho f)La) =2 —2
1 B x—5 1 ey
b f7@)=—— and f7(-3)=-4 REVIEW SET 2B I
_ —1
g '(z)=8-2z and g '(6) = —4 1 a not a function b function, one-one
Y =3)—g716)=0 ¢ function, not one-one
cz=3 a 12 b z=+1
11 a i2 i 16 b z=1 a e s b s 1or3
12 a Isnot b Is cls diIs els f Is not r= or r=ror
3 3 a
13 (f 7 og @ = and (g0 ) (@) =
REVIEW SET 2A
1 a function b function ¢ nota function d function § a
2 a=-6, b=13 6 {y:
3 axz=-2o0rl2 b x=-5o0rl
4 a 10 b 22—z —2
5 Domain is {z : > —3}, Rangeis {y:y > 2}

i
i function is one-one
b i Domainis {z:xz € R}, Rangeis{y:y> —5}
i
i

function is not one-one

c Domain is {z : z € R},
Rangeis {y : y = —3 or y =1} 8 a i1-10x i 5—10z b z=-2
ii function is not one-one 9 a=1 b=-6c=5
6 b
10 a Y4 c v F )
3 2/
@) 3 4 /
‘4/0 f (f) 2/ 0ol” f<f
A < / o
yEe y=z ¥
7 b The function does not have an inverse.
7— 5 — 3
11 a [l = — b f7i(z) = =
4 2
4 6
12 (foh ) (@) = (ho f)(z) = :”1; 13 16
EXERCISE 3A.1 I
8 a + b + 1 ax:O,—% bx:o,—% cgc:O,%
_o 1 _q 8 _0 3
d z=0, %5 e z=0,3 fr=035
g =32 h z=4,-2 ix=37"7
jz=3 k z=-4,3 r=-11,3
_2 __1 __2
2 az=3% b z —5,7 ca:——§,6
_1 3 2
d.’l)—g,—2 e(L‘—§,1 fx —g,—Q
__2 _1 _3 _ 1
g.’l?——g,4 h x 3 79 |$——Z,3
: 3 5 1 _ 28
je=-33 k o=1, -1 lo=-2 2
3 axz=25 b z=-32 c =0 -2
r=1,2 ex:%,—l x=3

¢ The function does not have an inverse.
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EXERCISE 3A.2 —

1 axz=-5+2 b no real solutions ¢ z =4+ 22
d z=8+7 e z=-3+v5 faz=2++6
go=-1+vI0 hao=-1+1/3 io=1+4

2 az=2+3 bz=-3+v7 ¢a2=7T++3
d z=2+7 e zr=-3+v2 fa=1++7
g r=-3++v11 h z=4+6 i no real solns.

3 az=-1+2 ba=3+¥2 cao=-2%,/7
dz=1x/I exz=3x/¥ ft2=-1x2

_ 2 10 _ 1 V21 _ 5 13

4 ac=3+¥0 pao=—Fr¥B cao=-F+YE

5 —b+ Vb2 — dac
r=

2a

EXERCISE 3A.3 I

1 axz=2+7 bz=-3+v2 ¢ a2=2++3
dz=-2+v56 e z=2+2 fo=1+1V7
ge=2+¥T hz=2+V0 iz=1+¥B

2 az=-2+2/2 bzzfgi@ cx—gi@

_ 47 _ 7 4 /97 _ 1 145
gm:%i%ﬁ hm:%ié Ix:%i@

EXERCISE 3B I

1 az<

c $<—§ or x >3

e z<0orxz>3
—2<xr<2

T # -2
4<xe<7

no solutions

2 0 3 x o

t xeR

u
2 all=< b O

—3 or x >2

—1l<z<4

r< —2 or x>15

z<—% or © >4

—%<$<0
r< -3 or x>3
r < —5 or x >3
—-6<zr<—4
r< —1 or 12%

b
d z<0or z>1
f
h

s =3

3 1
—§<I<§

r no solutions s

)_.
=
|
mﬁ
)

o

<
c

Il
N

EXERCISE 3C

1 a 2 distinct irrational roots
¢ 2 distinct rational roots

e no real roots
2 acdf
3 a A=16—4m

im=14
b A=9—-8m

i m:%
c A=9—4m

i m:%

b 2 distinct rational roots
d 2 distinct irrational roots
f a repeated root

+

-— ey
4
ihm<4 il m>4
+ —
-y
9
8
iim<3 m#£0 i m> 2
+ —
<—|—>m
9
4
il m< ,m;éO iiim>%

4 aA:k2+8k @k
-8 0
i k<—-8or k>0 i k<-8or k>0
iii k=-8or0 iv -8<k<0
b A=4-—4k? i
-1 1
i —1<k<1, kK#0 il —1<k<1 k#0
iii £k=+1 iv k<—-1o k>1
c A=k>+4k—12 + - 4
-+
—6 2 k
I k<—6 or k>2 i k< —6 or k=2
ifli k=—-6o0r2 iv - 6<k<?2
d A=k?—4k—12 S S
-+
-2 6
i k<—-2o0r k>6 iik<—-2o0r k=6
ifli k=6o0r—2 iv -2<k<6
e A=9k?— 14k — 39 Lo
Tk
9
i k< %ork>3 ||k<—% or k>3
ame 13 13
iii k= —For3 IV—T<]<:<3
f A=-3k>—4k L=y
_4 0
3
i —3<k<0 k#-1 0i —3<k<0, k#-1
il k=—%o0r0 iv k<—3 or k>0

EXERCISE 3D.1 I
1 ay=(-4@+2) b f(z) = (e —

Y y

7N

c y=2(z+3)(z d f(z)=-3@+1)(z+5)

\ 1 A

4)(z +2)

x

|y

e f(z) = 2w +3)? fy=—L1a+2?
y TZ/

< —2 o
18 T

—1

< z
-3 lO
2 az=1 b x=1 c r=-—4
d x=-3 e r=-3 fr=-2
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3 aC bE ¢cB dF e G fH gA hD
4 a b

cy=(@—-22-4 dy=(z+3)" -2

5
2 a iy=2x+12+3 b iy=2z-22-5
i (—1,3) i 5 i (2,-5) iii 3
iv iv
Yy
y=22>—8x+3
y=222+4z+5
- ol %
6 a G b A c E d B el
fC gb h F iH
c iy=22-32-1 d iy=3a-1)2%+2
EXERCISE 3D.2 I i (%,,% i 1 i (1,2) iii 5
1 ay=(@x-12+2 b y=(z+2)2-6 iv iv s
, Yy =27 — Gz +1 y=3x"—6x+5
./
V(1,2) - Ol >
T
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1 a
d

g
2 a

Answers
iy=—(z—-22+6
ii (2,6) iii 2

iv

y V(2,6)
2

(2, -2) b (-1, -4)
0, 1) e (—2,-15)
3 11 5 19
—§>—7) h (5,—7)
ixz=4 b
i (4,-9)
iii z-intercepts 1, 7,
y-intercept 7
iv Yy
r=4
713
- %
v {y:y>-9}
iz=3 d
ii (3,9)
iii z-intercepts 0, 6,
y-intercept 0
iv
V(3,9)
Lo i \6e
z=3
v {y:y<9}
r=—1 f

i

i (—1, —26)

i z-int. —1++/13,
y-intercept —24

=Y

V(—1,—26) :

v {y:y>—26}

c (0,4)
f (-2, -5)
i(L-2)
I z=-3
ii (—3,1)

ili z-int. —2, —4,
y-intercept —8

iii z-intercepts 1, 2,
y-intercept —2

YOVEy

o2 1

n (g, g)

iii z-intercepts %, 1,
y-intercept —1

iv y ,
V3.9
T ol /1t T ~
3
-1
r=2
v {y:y< 3}
Yyys 3

g i :c:%
i (3, %)

z-intercepts %, 2,

y-intercept 2

h iz=1

ii (1, —9)

P 15

ili x-intercepts —3, 3,
y-intercept —5

[\ AY
v}
2
1o
_ 2 2
¥ PV(3,-9)
. 9
v{y:y>-—-3}
i r=4

z-intercepts 2, 6,
y-intercept —3

{y:y<1}

<

a i y=(z—-2)(z—38),
roots are 2 and 8
ii y=(z—5)2-9,
vertex is (5, —9)

16

V(5,-9)
c iy=(x-5)(z—9),
roots are 5 and 9
i y=(x—7)2—4,
vertex is (7, —4)

V(-2,16) &Y

y=|z?+ 4z — 12|

y=12%—10x + 16

] =4

b iy=(z+1)(z+9),
roots are —1 and —9

ii y=(x+5)2—16,
vertex is (—5, —16)

iii

iii Y

y=x?— 14z + 45

0]

\j

b y
V(-4 44—9)%/' .

y=|—2%— 3z + 10|

—6Y, of ; -5 O|2% %
y=a?+dz 12|/ y=—2>—3z+10 B
N ™ : :
‘o H H
V(-2,-16) § \ A\
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Answers

EXERCISE 3D.4 I

1 a cuts z-axis twice, concave up

b cuts z-axis twice, concave up

c lies entirely below the z-axis, concave down, negative
definite
cuts x-axis twice, concave up

touches x-axis, concave up

cuts x-axis twice, concave down
cuts x-axis twice, concave up
cuts x-axis twice, concave down
touches x-axis, concave up

-0 -0 2

concave up
A =17 whichis >0
z-intercepts

~ 0.22 and 2.28
y-intercept = 1

[ - -]

3 a A=-12 whichis< 0 d
negative definite
c vertex is (2, —3),

y-intercept = —7

-3

4 a a=1 whichis >0 and A = —15 whichis <0
so is entirely above the x-axis.
b a=—1 whichis <0 and A = —8 whichis <0
so is entirely below the z-axis.
¢ a=2 whichis >0 and A = —40 whichis <0
so is entirely above the x-axis.
d a=—2 whichis <0 and A = —23 whichis <0
so is entirely below the z-axis.
5 a =3 whichis >0 and A = k2 + 12 which is always > 0
{as k2 >0 forall k} always cuts z-axis twice.

6 —4<k<4

EXERCISE 3E

1 ay=2x—1)(z—2) b y=2(z—2)2
c y=(z—1)(z—-3) d y=—(x—3)(z+1)
e y=—3(x—1)>2 f y=-2(z+2)(xz—3)

2 ay:%(z—Q)(w—él) by:—%(:c+4)(:c—2)
c y:—%(z+3)2

3 ay=3z2—-18z+15
c y=—az2+6x—9

b y=—4z>+6x+4

d y =4z + 16z + 16

4 ay=322-6x+3 b y=—222+22+5
5 ay=—(r—2)>2+4 b
c y=-2x—-3)2+8 d
e y=-2x—-2)2+3 f

y=2(x—-2)2-1
yz%(x—4)2—6
1)2_3

y=2r-3)" -3

EXERCISE 3F
1 a (1,7) and (2,8) b (4,5) and (-3, —9)
¢ (3,0) (touching) d graphs do not meet

2 c=-9 3 m=0or—8 4 —lorll
5§ ac<-9
b example: c¢= —10 bV fy=20" 327
- 10/
< \O/ >
y:z;y*m
v
6 ac>-2 b c=-2 c c<—2
7 am<-—-1o m>7 b m=—-1o m=7

c —-1<m<7
8 Hint: A straight line through (0, 3) will have an equation of

the form y = ma + 3.
EXERCISE 3G I

1 7and —5 or —7 and 5 25or% 3 14
4 18 and 20 or —18 and —20 5 15 sides
6 3.48 cm 7 b 6 cmby6cmby7cm

8 11.2 cm square 9 no
11 a y= —%x2 +8
b No, as the tunnel is only 4.44 m high when it is the same
width as the truck.

12 b The graph is a parabola. c 21.25m
d f(z) = —0.0522 + 2z + 1.25 e yes
EXERCISE 3H I
1 a min. —1, when z =1 b max. 8 when =z = —1
1 _1 : 1 _ 1
¢ max. 83, when = = 3 d min. —15, when = = -3
: 15 _1 1 _
e min. 4E’ when =z = 3 f max. 65, when z = 7
2 a 40 refrigerators b $4000

4 500 m by 250 m
6 a 41§mby41%m

5 ¢ 100 mby 112.5 m
b 50 mby 314 m
7 b 3% units

8 ay=6-3z b 3 cmby4cm

REVIEW SET 3A I
1 a —-21 e

- 20 T
—
|
=
wlo
=

y=-2+2)(xz-1) y



466 Answers
2 az=0o0r4 b z=-2or2 c z=150r -4 9 az=-1 d y
b (-1, —3)
3 a m:fgi@ b o= 4 vldd ¢ y-intercept —1, ~1-3V6 ~1+3V6
1 z-ints. —1 4+ £/6 <\ p
a 3<x<T b z<—5 or z2>2 2 0| ;
—1
a b
4 z=2 v =922 4+ dg — T4 —1,-
:y:(z72)274 y=2x"+4x (-1,-3)
~ i / . - i . |10 {yi-ss<y< )
o i /4 / )\ 11 ak=-8 bk<-8ork>0 ¢ -8<k<0
: y:7%(1+4)2+6§ 12 a c¢> —6
\ T —1) o4 ] b example: c¢=—2, (=1, —5) and (3, 7)
13 a y=—2(z+5)(z—1) b (-2, 32)
: _ k2 _ 2
6 ay:3x2724:r+48 by=%m2+1—§w+%7 14 amll’l.—5§ when :c——§
_ =1 __5
7 a= —2 whichis <0 B /\ a max. b max. = 5g when z=—3
max. =5 when z =1 15 b 374 mby33im ¢ 1250 m?
8 (4,4) and (—3,18) 9 k< -3% 16 by
0 am=3 bm<y em>3 11 ford 20
. . . y= |22+ 2z — 20|
12 Hint: Let the line have equation y = maz + 10.
13 a y=2@z+1)2%-5 b Y
f - 510 R T
Y '.'y:w2+w—20
y:2z2+4173 “‘;'iZO
_3 J
EXERCISE 4A.1 I
' 1 all b V15 c 3 d V30
e 4 f 12 g 42 h 45
14 a y=2(-2)2-20 b y=-2(@x—-1)(z—7)
29( L v i V6 i V6 k 2 1 V5
c y=zs¢(x
9 2 a 22 b 23 c 2v5 d 42
REVIEW SET 3B I i 5V2 i 45 k 46 1 6V3
1 az=2 d v EXERCISE 4A.2 I
b (2§_4) =2 1 as5V2 b —vZ ¢ 2v5 d 85
¢ - e —2v5 f 9v3 g —3v6 h 3v2
e {y:y>—4}
- 2 a3/2-2 b 5++5 ¢ 3v10+20
d 21 —4V7 e —5V3-3 f 12—-14V6
g —8+5V8 h —12v/2+ 36
3 a 22+9V2 b 34+ 153 c 224147
d -7—-3 e 34 —15V8 f —47+30V5
.. S, . 4 a 11+6V2 b 39—12V3 c 6+2V5
2772 1+=77 d 17—68 e 28 +16V3 f 46 + 65
3 a -7<z<2 b o<—4o0r z>3 g 89 — 2810 h 166 — 40v/6
4 z— 4 V(& 121 5 a2 b —23 c 13 d7
5 Vi3 123) e —56 f 218
5 a graph cuts b graph cuts
x-axis twice x-axis twice EXERCISE 4A.3
X/ a 1 a2 b3 e3/3 dlYE o V6
f V2 €32 he6/2 0% i 2
6 a a<0, A>0, neither 3.5 /5
b a >0, A <O, positive definite 2 aVh b 3V5 ¢ _\/? d 40v5 e ?
211 = 3
7 y=—6(z—2)2+25 8 m<—5 or m>19 £ V7 g3V7 hHE 0 2/13 ¢




Answers 467
2
3 a 377\/5 b ﬂ c —2++5 6 a 4a® b 27b3 c a*b? d p3g3 e m_2
n
V21 - 2/3 a® b* m* z3y3
d 14++2 e 2+2V6 F—— - — h 1, ab#0 i j —
V2 V6 3 7 & ab# 8ini ) "8
3443 2 4 843 _97,.6,6
g —3_2v3 p 3+43 | 4423 7 ada b 36b c —8a d —27mfn
13 4316 —8aS 16a° gp*
e 16a°b f 5 g - h 5
) 54 3v3 —38 +11/10 b b q
i —7-3V5 k —— | — 5012 _opl8
o s . s i 4x3y> i 3245 k - 1 3
4 a-2-32,2 b 4—2V2 c -2 —2V2 , , y2
d —4+2V2 8 a X b da” 9” e X
1.5 b2 a?b? b2 at bc?
a —2-2v/3 b 12-6/3 ¢ 3+2V/3 d —3+3V3 9 5 B )
a“c 3 . 3
a (a+by2)(a—by/e) =a? — bc f 5 g a h ) = j 12am
which is an integer as a, b, and c are integers. 9 aa" b b c 3" 2 d o™ e q-2n—2
—1+2V3 —6 — 5v/2 4 9 5
b CLt2V3 L V2 143 0 al bt c6 d27 e X f3
11 7 g 2L p 13l
125 5
7 a (‘}/I,a;_\/g)(,‘{__\/l_’)_gb_b ” 11 a3 2 b2* ¢53 d3x5! e 22x33
whnich 1S an mteger as a an are mtegers.
& & f 2073x372 g 3%k x271x57 1 h 22x3P1x52
b i vV3_v3 i 2 vis 2VI54 =25 | 42 a 53 =214 23425427429
2 3 b 73 =43 +45+ 474+ 49 + 51 + 53 + 55
8 1=-7+5/3 9 z=1+ L5 ¢ 123 = 1334 135 + 137 4 139 + 141 + 143 + 145 + 147

EXERCISE 4B

1 a2l=2 22=4 23=8 2¢=16, 2°=32, 26 =64
b 31 =3, 32=9, 33 =27, 3* =81, 35=243,
36 =729
c 41 =4, 42 =16, 43 =64, 4* =256, 4° = 1024,
45 = 4096
2 as5l=5 52=25 5%=125 5'=625
b 6' =6, 62 =236, 65=216, 6'=1296
c 7'=7, 72 =49, 73 =343, 7* =2401
3 a -1 b 1 c 1 d -1 e 1
f -1 g —1 h —32 i —32 j —64
k 625 1 —625
4 a 16384 b 2401 ¢ —3125
d —3125 e 262144 f 262144
g —262144 h 902.4360396 i —902.436039 6
j —902.4360396
5 a 01 b 0.1 c 0.027 d 0.027
e 0.012345679 f 0.012345679 g1 hi
Notice that a= " = —
6 3 77
EXERCISE 4C I
1 a5l bpdgd c kP d 1 e z10 f 316
g€ p % hn!2 05 j 72 Kk 10379 1 im
2 a 22 b 272 ¢ 23 d 273 e 2° f 25
g 2! h 271 j 26 j2% k27 1 277
3 a 32 b 372 ¢ 33 d 373 e 3! f 371
g 3¢ h 374 i3 j 3 k 375
4 a 20t p 2042 ¢ 23 4 22242 e 27!
f 2072 g 22m h 2ntl 21 j 231
5 a 3rt2  p 33 c 32+l g 3943 o 33t+2
f 3y71 g 317y h 3273t i 33&71 i 33

%Y
-

N
]

Y
= D =D = D

1 a
d

N
o 0o o 0

(2]
L]

+ 149 + 151 + 153 4 155
EXERCISE 4D I

ot
|

1
2 e 23
_4 _3
2 3 j 2 2
3 _5
32 e 3 °
5 2
23 e 7°
_5 _2
2 3 i
0.435 e 1.68
125 e 4
1 1
31 ) o35
c r+1
f 22+2z+3
3 1l
iz 4z +1

4
9 c¢caxz—z? d:c2+4+—2
T

1
2° b 2 c 2 d
4 3 3
23 g 2° h 22 i
1 _1 1
33 b 3 ° c 3* d
1 3 4
73 b 3° c 2° d
_1 _3 _4
73 g3 * 2 ° i
2.28 b 1.83 c 0794 d
1.93 g 0.523
8 b 32 c 8 d
1 1 1 .
3 g€ 3 h 15 !
EXERCISE 4E.1 I
25 4+ 224 + 22 b 4% 4 2%
49% +2(7%) e 2(3%) -1
1+5(277) h 5% +1
4z 4 2z+1 _ 3 b 9% 4 7(3%) + 10
25% — 6(5%) +8 d 47 +6(2%)+9
9% —2(3%) 4+ 1 f 167 + 14(4%) + 49
z—4 b 4% —
72 24772 f 25-10(27%) + 477
4 2
z° 4+ 2z +x° h 23 —222 + 2

g

EXERCISE 4E.2 I

1 a
d

0o ®© o o

i de—4+z1

57(5% 4 1) b 10(3") c 7T(1+ 7%
5(5™ — 1) e 6(6"t1 —1) f 16(4" —1)
(3% +2)(3* — 2) b (2% +5)(2% — 5)

(44 3%)(4 —3%) d (5+27)(5—2%)

(3% +27)(3% — 2%) f (27 4 3)2

(3% +5)2 h (27 —7)? i (5% —2)2
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3 a (2243)(2°+6) b (27 4 4)(2% — 5)
c (35 +2)(3°+7) d (3% +5)(3% — 1)
f

e (57 4+2)(5* —1) (7% —4)(7* = 3)
1
4 a 2" b 10¢ c 3° d5—n e 5
f(3)e g5 h 5
5 a3"+1 b 14+6™ c 4" +2" d 4% -1
e 6" f 5" €4 h2r-1 i
6 a n2nt! b —3n~1
EXERCISE 4F I
1 az=3 b =2 c =4 d z=0
e r=-1 fx % g zr=-3 h z=2
iz=-3 jx=-4 k =2 Il =1
_ 5 _ 3 _ 3 _ 1
2 am—g bx—fi c.’l’}—fa dx—fa
2 5 3 _ 5
A 1 = _ 9 _ —
iz=3 iz=3 k z=—-4 Il x=-4
mz=0 nx:% o x=-2 p r=—-6
3 a m:% b has no solutions ¢ x:2%
4 az=1 b z=2 cx=1
d z=2 e =2 fo=-2
5 az=3 b z=2 c x=2
d x=2 e r=—-2 foz=-2
6 ax=1lor2 b x=1 c r=1or2
d x=1 e r=2 frx=0
EXERCISE 4G I
1 ald4d b 1.7 c 2.8 d 04
2 az~16 b x~-07 ¢ z~x21 d z~-1.7
3 y =27 has a horizontal asymptote of y =0
4 a2 b 54 c 2
5 ag(0)=3 g-)=% ba=2
6

ii Domain: {z:z € R}
Range: {y:y > 1}
iy~ 3.67

iv As £ — 0o, y — 00
As © — —oo, y — 1 from above
vy=1
ii Domain: {z:x € R}
Range: {y:y < 2}
iii y~ —0.665

iv As £ — 00, y > —
As © — —oo, y — 2 from below
vV y=2

ii Domain: {z:z € R}
Range: {y:y > 3}
iy~ 3.38

4 y=2"43

iv As © — 0o, y — 3 from above
As © — —o0, Yy — 0
vy=3

d ii Domain: {z:z € R}
Range: {y:y < 3}
iy~ 2.62
y=3— Zml
iv As * — 0o, y — 3 from below
As © — —o0, Yy — —0
vy=3
a Py=50 c AP(n)
H 10, 1600
i 100 possums 1500 ( )
ii 400 possums
i 1600 1000 P(n) =50 x 2°%
possums
d 8 years 500 (6,400)
(2,100)
50 n (years)

-

0 2 4 6 8 10
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Answers

10 a 100g c AW (g
b i ~173g 1500 (24, 1397)
ii 300¢g 1250
ii ~ 1397g 1000 W(t):100><30‘1t
d 20 hours 750
500
250 (10,300)
100 (5,173) ¢ (hours)
0 4 8 12 16 20 24 28
11 a 32 amps € 3oh I(t) (amps)
b 1 8amps 30
ii 25
il 2 amps 1) 32 x 4+
d 3 seconds 20
15
10
5
-
0 1 2 3 (seconds)
12 a i 22°C b 2oAT(1) (°C)
il 6°C 20
m o0
i —2°C T(t) = —10 + 32 x 2702
iv —6°C 10
(5,6)
0 10 20 30 -
¢ (minutes)
(10, —2) (15, —6)
-10 e
v T=-10

¢ The temperature will not reach —10°C according to
this model, as the model has a horizontal asymptote at
T = —10.

EXERCISE 4H

1 The graph of y =e”
lies between y = 2%
and y = 3*.

Y

2 One is the other
reflected in
the y-axis.
y=e
xr
a
a e >0 foral z
b i 0.00000000412 ii 970000000
5 a ~7.39 b ~20.1 c ~2.01 d ~1.65
e =~ 0.368
1 _1 3
6 a e’ b e 2 c e 2 d e?

Domain of f, g, and his {z:z € R}
Range of fis {y:y >0}, Rangeofgis {y:y> 0}
Range of his {y:y > 3}

Domain of f, g, and his {z:z € R}
Range of fis {y:y >0}, Rangeofgis {y:y <0}
Range of his {y:y < 10}

9 a 2T 4 2% 41 b 1—e2® c 1—3e*
10 a z= % b z=—-4
11 a fg(z) =e*% gf(x) =3e" +2 b x=—1
12 a Y4 y—z b Domain of f~1 is
{z:z >0},
Range of f~1is
IS e R

9 /1 T

REVIEW SET 4A I

1 a —15+20V3 b 86— 60v2
243 V35 Nid
2 a== b3y ¢y
2 2
3 a a%" b — c L
3z 5
4 a is81 i b k=9
1 2 2a
5 ax—5 b_a2b2 cb—2
92, 1
6 a 3522 p 3% 2 7 a4 b g
2,2 2
s m 1 c mep d 16n
n2 m3n3 n m?2
9 a 9—6e” +e2® bxz—4 ¢ 2241
_ 9 1
10 2= 2 + 513
— _ 3 1
11 a z=-2 bx_Z c z=—7
12 a C b E c A d B e D
13 a3 b 24 c 2
14 a Rangeof fis {y:y > —3} b —2 cx:%
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15 a 80°C c 7(°C) 5 A negative number cannot be written in the form 10° where
b i 40°C 80 b € R, so its logarithm cannot be found.
il 20°C 60 T=80x 20 6 a 1 0477 i 2477 b 1g300 = Ig(3 x 10?)
d 30 minutes " 7 a 10699 i —1.301 b 1g0.05=1g(5x 10~2)
8 a =100 b z=10 cxz=1
20 1 1
- d z=2= e z=10" fz=10 °
0 5 10 15 20 25 30 'f(minutes) g = = 10000 h 2 =0.00001 i =~ 6.84
J =~ 140 k = =~ 0.0419 I 2~ 0.000631

REVIEW SET 4B

1 a 17-11V3 b 28
2 a 54++/3 b VT + 211 . 26 + 11v/2
22 3 7
d —33—14v5
3
3 a x~145 b z~-06 ¢ x~1.1
4 a3-2/2 b3-2/2 ¢3-2v2 d3-2V2
4b
5 aa® b piq® ¢ 3
a
6 a 23 b 27 c 212
—a? 4
7 a 4mS b - c 3z3y>2 d 16ab®
3 1
8 222 9 a 59 b 5° c5 * d 52et6
10 a 1+e%® b 22% 410(2%) + 25 c x—49
11 a z=5 b z=-4
_ 2 _ 7
12 axr=-—%¢ b z=1 c =137
1 ~
13 a =+1~171 14
b a=-1
15 a |z | —2 —1 0 1 |2
8 2
—48 | —42 | 4| 2|4

b as =z — oo,
Yy — 00

as T — —oo,
y — —b (above)

d {y:y> -5}

16 a Rangeof fis {y:y >0} b g(v2) = é?
c 1+%\/§

EXERCISE 5A I

1 a4 b -3 ¢l do e 1 f <
g -1 ni1ii i j1i k1t 13l

2 an b a+2 cl—m d a—0»

3 a lg4l~1.6128 b 41~ 1016128

4 a 100.7782 b 1017782 c 1037782 d 10—02218
e 1072.2218 f 101.1761 g 103.1761 h 100.1761
i 10—0.8239 j 10—3.8239

EXERCISE 5B

1 a 102 =100 b 10* = 10000
1
d 10° =10 e 23=38
g€22=1 h 35 =27
2 a logy4=2 b log,64=3
d log;49 =2 e log,64 =6
€ log;(0.01=—2 h logy(3) =—1
3 a5 b-2 c¢ci d3 e
h 3 i -3 i k2 1
on a>0 Pi aq-1t>
t1
4 a ~2.18 b ~ 1.40 c ~ 1.87
5 az=8 b =2 c =3
6 a2 b 2 c -1 d3
€ -2 nh-3 i22>0
k 3, m>0 12 2>0
n -2, a>0 07%,a>0
EXERCISE 5C I
1 a lgl6 b 1g20 c lg8
el f lg2 g lg24
i 1g0.4 i1 k lg200
40
I 1g(10t x w) m log,, (—2)
m
o 1g(0.005) p logs(5) a2
2 a lg96 b 1g72 c Ig8
e 1 flgi g 1g20
il 2
o -
&\ 10
3 1
3 a2 b 5 c 3 d 3
4 For example, for a, 1g9 =1g32 =2Ig3
5 a2 b -1 c 1
6 az+z b z+2y
e 3y7%z f 22+%y73m
7 ap+tgqg b 2q-+r c 2p+3q
e r—>5p f p—2q
8 a 0.86 b 2.15 c 1.075
10 a log; A+ 3log, B = 15,
b logi A=6, log;,B=3
d B=1¢

c 1071 =0.1
f32=9
_1
i5 %=
¢ logs 25
f log,(3)
i logg(g7) = —3

d ~ —0.0969
d z=14

1 5
e — f 3

P
it x>0

m —1, n>0

5

p bR m >0

d lg;£
m
h log, 6

n 0
r 1g28

d 10g3(2—85)
h lg25

3
e —2 f—§

czrz+z—y d 2x+%y

d r+%q—p

9 log, Q=3

2log; A —log, B =9
¢ log,(B°VA) =18



Answers 471
EXERCISE 5D.1 I e?
5 a D=ex b F=— ¢ P =5e%*
1 algy==xlg2 b lgy=3lgz P
= = 1
c lgM 141gd d lgT =xlgb d M= e3y? e B=1e3 f N=—
e lgy=s5lgx flgy=I1g7+xlg3 V9
g lgS=1g9—lgt h lgM=2+2xl1g7 4.85
i N i ) g Q ~ 8.66x> h D~0.51870% i T~
i lgT=Igb+ 5lgd ilgF=3-35lgn e’
k lgS =1g200 +tlg2 I lgy=3lgl5—3lga EXERCISE 5F I
2 ay="7" b D=2z cF:§ d y=6x27 1 a r~3.32 b z~273 c x~ 332
) t L0e d o=4 e z~8.00 fz=-5
e P=\z fN=3—ﬁ g P=10z" h y=—- 2 a z~143 b z~1.56 ¢ z~3.44
22 i d z~5.82 e z~ —1.34 f x~237
iy:E i T =2k kP:? I y=28x 16~ g x~0.275 h z~~ 1381 i z~9.64
23 3 a x=1Inl0 b z =1n1000 ¢ z=1n0.15
8 ay=+ b Ty=4 0 y=32 d z=2In5 ex=1lm18 fa=0
1z
4 a y=100(10"") b i y=100 i y=1000 4 az=1In300 b z~285
5 a If there is a power relationship between y and «, for example 101g (L0 1
. 2 . g3 —4lg (3
y = 5z, then there is a linear relationship between lgy 5 a = _M = A = J
and lg . lg2 lgh lg3
b If there is an exponential relationship between y and z, for 6 a 3.90 hours b 15.5 hours 7 b t~6.93 hours
example y = 4 x 2%, then there is a linear relationship 8 as0g b ~ 13200 years
between lgy and x.
9 az=In2 bz=0 ¢ z=In2 o In3 dzxz=0
EXERCISE 5D.2 I
= - 345 3-V5
1 az=25 b =67 cx=20 dao=15 e z=Ind fx_ln( 2 )mln( 2 )
e z=5 f no solution g w:% h no solution 10 a (In3,3) b (In2,5) ¢ (0,2) and (Inb, —2)
2 az=5 b z=30r6 ¢ z=204 dz=2
. EXERCISE 5G I
e r=1 f no solution g z =2 h z=14
3 az=238 b x=3 c z=6 d z—4 1 a ~226 b ~-103 ¢ ~—-246 d =~~5.42
2 a zrz~-—-429 b =~ 3.87 c z~0.139
EXERCISE 5E.1 I ‘ : ‘ N
1 a2 b 3 c % d o e -1 f % g -2 3 a logg26 = 5logs 26 b logy 11 = 2log, 11
6
_1 c = 3logs 7
h =3 log, 25 085
1 1
2 a3 b9 ecg djg 4 az=¥50 b z=13 c z=49
3 z does not exist such that e* = —2or 0 dz=5 e r—8 f 2—16
4 1 —
aa bra+ ¢ atb d ab ea-b 5 iz=2%or9 il z=2o0r32 iii 2=2o0r64
5 a 17918 b %0943 c 86995 d e—0.5108 9 2
e e 00 f 27081 g o TSI82 p 04055 EXERCISE 5H I
i e—1.8971 j 88049 .
1 a i Domain is iii . Ay
6 a z~201 bzrz=e~272 c¢az=1 {z:z>-1}, i y =logs(z +1)
1 Range is 715
dm_z~0.368 e z~0.00674 {y:ycR} 15 »
f oz~ 2.30 g o~ 854 h =~ 0.0370 W VAis 2 =—1,
x and y-intercepts 0 y
EXERCISE 5E.2 I iv mzfg
1 a In45 b In5 c In4 d In24 v f[la)=3"—1
6
e In1=0 f In30 g In(4e) h In (—) b i Domain is fii
e
{z:z>-1},
20 : b =1-1 +1
i In20 j In(4e?) Kk In <—2) I In1=0 Range is N
1 1 1 61 1 e 5
2 aln972 b In200 ¢ In1=0d Inl6 e In6 ii VAis z=—1, :1; ——r

-

ln(%) g ln(%) h In2 i Inl6

3 For example, fora, In27 =1n33 =3In3

2
4 Hint: Ind, In (%) —lne2 —In23

z-intercept 2,
y-intercept 1




472  Answers
¢ i Domain is i W, iv fhasaVA =0, z-int e*
{z:z>2}, o= o7 f~lhasaHA y =0, y-int e*
Range is -— — . _ .
{y:y €R} of: T d i (=) ii i
: H _ z—2 ’
il VAis z =2, ; —lhe
x-intercept 27, i[y=logs(z —2) -2 iii Domain of f is
no y-intercept : {z:2 > 1},
ivz=7 v Range is =
v f7iz) =527 12 {y:yeR} ~
Domain of f~1 is Y
d i Domain is iii Y - +
Y {z:z € R} O
{z:z>2}, ) ’ -
Range is Rangeis {y:y > 1}
. i iv fhasaVA z =1,
{y:y €R} N\y=1-—logs(z —2) R o A
ii VAis z=2, m-irith1+ci{A L,
z-intercept 7, f . isf 5 y==5
: » : > -int 14e”
no y-intercept o 7 = y-n
iv z =27 x 9 T~ 3 a Ais y=Inzx b
v fl(z)=51"" 42 voee as its x-intercept
is 1
e i Domain is iii vh ¢ y=Inz has
{x:m?(]}, VA =0
Range is y=1-2logs y=In(z —2)
{y:yeR} has VA z =2
ii VAis =0, y=In(z + 2) \ !
a-intercept /2, _ V2 - has VA o = —2 y=Ihz
no y-intercept [¢] \x 4 y=In(z?) = 2Inz, so she is correct.
iv z=2 . y This is because the y-values are twice as large for y = In(2?)
v f~Hz) =272 as they are for y = Inz.
L 5 a fliz—In(z—-2)-3
2 a i ﬂf ("’)5 " Yh g pe=5 b i z<-530 i 2<-761 iii <991
_— n(.:c - ) f(z)=e*+5 iv £ < —-12.2  Conjecture HAis y =2
iii DorTlaln olgf is ¢ as @ — oo, f(z)— oo,
{x:ze b as  — —oo, €13 =0 and f(z) — 2
Range is {y:y > 5} HA is = 2
I{);)r.nz;m>0£{ ' d VAof f~lis x =2, Domainof f~1is {z:z > 2}
Rangeis {y:y€R}  ,—4 6 a i f(5)=3 it f(22) =logy(x? +3)
iv fhasaHA y=5, iii f(2z —1) =1+ logy(xz + 1)
f has y-int 6 b Domain of f(z)is {z:z > —3} c r==45
f~lhasa VA z =25, f~! has z-int 6 . 1 1
b f’l(m) i 7 a Rangeis {y:y>1} b f~(z) = 5n(z—1)
-1 _1
=In(z+3)—1 ¢ f7(10) = 3In9
iii Domain of f is d Domain of f~1(z) is {z:z > 1}
l{zx:w.ER}, e (fof @)= ""tof)=z)=2
ange is x -
wouss 8 a /(o) =}
Domain of f~1 is i (flog)(z)= %IH(QI —-1)
{z:z> -3}, i gy = 11 (x+1)
Range is (gof)~H(z)=3In 3
{y:y e R} b z=13
iv fhasaHA y= -3, z-int In3 —1, y-int e —3 10 B . .
Flhasa VA o= —3, a-int e—3, gt In3— 1 9 a f(1)= o g(6) =1In3 b z-intercept of g(z) is 4
: . " 10
R . o fole) = — d z=n2
=e
iii Domain of f is 10 a Domain of f(z)is {z:x > —6}
{z:z >0}, b f~l(z)=e*—6
Range of f is ¢ z-intercept is —5, y-intercept is In6 dz=-8or3
3
{y:yeR}
. 1. .
Domain of £~ is REVIEW SET 5A
{z:z €R}, 1 a3 b 8 c -2 d 1 e 0
Range is f i g —1 h %, k>0

{y:y>0}




Answers 473
1 1 YA
2 a 3 b -3 C (l+b+1 d 2 .
25 rq y=z
3 a Inl44 b 1n(g) ¢ In <—> d In3 ;
e I g
4 a3l b -3 c 2 d1-2z
—1.37
5 a lgldd b log, (4) ¢ log, 80 \
6 algP=I1g3+xlg7 b lgm =3lgn —Igb 4_/{
7 az=3 b z=5 ‘
8 Hint: Use change of base rule.
22 14 13.9 weeks
9 aTl=— b K=3x2% N
5 15 a z=5 bw:320r§ c z=9or8l
10 a 5In2 b 3In5 ¢ 6In3 16 a Domainis {z:x >4}, Rangeis {y:y e R}
11 | Function | y =logoz | y = In(x + 5) b z-intercept is 5, no y-intercept c z=4+V6
Domain x>0 > -5 dz=0
hane yER yER EXERCISE 6A.1 I
2 2 _me2 _
12 a 244 2B b A+3B ¢ 34+1B 1 :i””4+?§§928"25"’27+7a’1;9 ¢ —Tz"—8x—9
d 4B - 2A e 34— 2B S
) ) 2 a 23422447 b 23 —22—-22x+3
13 az=0oIn(}) ba=e ¢ 323 + 222 — 11z + 19 d 223 —22—z+5
14 a xz~246 b z~1.88 15 =~ 6.97 years e x° —z* — 23 + 822 — 11z 410
16 a Rangeof fis {y:y > 1} f oot —22% 4507 — 4z 44
R o 3 a2®-322+4c+3 b zt+® -T2+ 702
b i f~ (I):ln( — ) i f7(2) =In5 ¢ 23 +622+120+8  d 42f — 423 + 1322 — 62+ 9
. . 16x* — 3223 + 2422 — 8z + 1
-1 x> 1 d o= °
: Domain of f7% is {z:z>1} v=0 £ 1824 — 8723 + 5622 + 20z — 16
4 a 6z%— 1122 +18zx—5 b 8z% + 1822 — z + 10
¢ 23+ 722+ 13z +10 d 223 —7z2 +4x+4
e 2% — 223 — 922 4 11z — 2
f 152t 423 —22+72—6
g x* — 223 + 722 — 62+ 9
h 42* + 423 — 1522 — 82 + 16
i 823+ 6022 + 150z + 125
j a8 225 + 2t — 423 — 422 44
EXERCISE 6A.2 I
REVIEW SET 5B I 1 a Qx)=2, R=-3, 22+2x—-3=x(x+2)—3
1 a3 b 2 ¢ a+b b Q)=z-4, R=-3,
1.5051 2.8861 4.0475 I275:E+1:(2774)(:E*1)73
2 a ~ 10" b ~ 10—~ c ~10~* c Q(I):212+1OI+16, R:35,
3 az=3 b x~82.7 ¢ x~0.0316 223 + 622 — 4z + 3 = (222 + 10z + 16)(z — 2) + 35
4 a k~325x2° b Q=5P3 c A=6x2" 2 as®-3z+6=(z+1)(z—4)+10
g7 b 22 +4x—11=(z+1)(z+3)— 14
5 afvzlg—5 b z=2 c 202 — Tz +2=(2z—-3)(z—2)—4
d 223 +322 -3z —-2= (22 +2—2)(2z+1)
-1 7 logg 30 = % log, 30 3 9 5
8 3702 e 323 + 1122 + 82+ 7= (22 +4x +4)(3x — 1) + 11
az=8 bzxz=3 9 a9 b Inb5 f 2t — 23 24 Tx 44
10 a In3 b In4 c In125 :(w372m2+%x7%)(2m+3)+17‘9
11 a IgM =Ig5+xlg6 b g7 =lg5— 11g! s ) 9 b o1 1
¢ lgG=lgd—lgc A S
12 a z=1In3 b z=1In3 or In4 ¢ 3445 d 224322
13 a Domainis {z:xz > —2}, Rangeis {y:y € R} T+2 124 .
b VAis x = —2, z-interceptis 7, y-interceptis ~ —1.37 e 22 —8r+31— f 22+3z+64+ ——
¢ g—l(x):3m+2_2 x+4 T —2
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EXERCISE 6A.3 Im—— 6 aa=1b=-2 c=-1, k=-4
1 a quotientis x4+ 1, remainderis —x —4 b f%, 1++/2
b quogent is 3, remaln.der is —x+3 7 aa=-2 be2 b —1++3
¢ quotient is 3z, remainder is —2z — 1
d quotient is 0, remainderis = — 4 _ 3 —3£V13
q ) 8 a=—11, zerosare 3, —
2 a1l —=2 22—z +1=1x2+z+1) -2z
24+z+1° 9 aa=-9 b=-—
2% b P(z) =0 when z = —1, 7%,2,4
b 2 ——, 23 =2(22+2) -2z . 5 5 5
2 +2 10 Hint: Let 23 +322 -9z +c= (z+a)?(z+D)
c 2 +m+3+ 35”_4 . When ¢ =5, the cubicis (z — 1)2(z + 5).
—z+1 When ¢ = —27, the cubicis (z + 3)2(z — 3).
3 —1=(2? 3z —z+1)+3z—4
wt+3a% +2 (@ +ot3)@ —atl)+se EXERCISE 6C I
d 2z +4+ 5z_+22, 1 a P(z)=Q(z)(x —2)+7, P(x) dividedby = —2
(z—-1) leaves a remainder of 7.
203 — x4+ 6= 22z +4)(x—1)2+5x+2 b P(—3)= -8, P(x) dividedby x + 3 leaves a
remainder of —8.
9 4xr 43 _ _
e x —21+3—ﬁ, ¢ P(5)=11, P(z)=Q(z)(x—5)+11
L (@+1) , 2 a4 b-19 ¢l 34
ot = (2" — 20+ 3)(z +1)° — 4w -3 4 aa=3 b a=2 5a=-5 b=6
15 — 10 — _ _ _
£ o?—3m454 z_ 6 a=-5 b=6 7 -7
(z=1)(z+2) 8 a P(a:):Q(x)(Qa:—l)-i—R
4_ 9.3 — (2 _ _
z* =2z +x+5 = (z° —3z+5)(x—1)(z+2)+15—-10z P(%)zQ(%)( x 1 L_1)+R
3 quotient is x2 + 2z + 3, remainder is 7 :Q(l) <0+ R
2
4 quotient is z2 — 3z + 5, remainderis 15 — 10z - R
EXERCISE 6B.1 I b i -3 ii 7 iii —7
1 a 4,—% b —-3++v10 c 5++19 9 a=3, b=10 10 a -3 b 1
d 0, £2 e 0, +v11 f 42, +2 EXERCISE 6D I
2 al, —% b 7%, +v3 c —3, 3,2 1 a factor b not a factor ¢ factor d not a factor
d 0,143 e 0,47 f £v2, £/5 2 ac=2 boc=-2 cb=3
3 a (2043)(x—5) b o(z—7)(x—4) 3 k=-8 Pl)=@+2@@-2)2+1)
_ _ 2
¢ (@—3—VB)(x—3+0) 4 a k=-8 . b P(z)=(x—3)(3z* +z — 2)
d ez +1+VB)(@+1-vE) e z(3z—2)(2z+1) cr=-133
f (@t D) 1)t VB vE) 5a=7 b=-14 6 a=3 b=2
4 Pa)=0. P(B)=0. P(1)=0 et LY 1
5 a P(2)=a(z+3)(z —4)(z 5. a#0 ¢ Ple)=(2+3)(2"+32-2) d -3 -2
b P(z)=a(z+2)(z—2)(z—3), a#0 8 aa=17 b=2 b z=-2+6
¢ P(z)=a(z 3)(9” —2x-4), a#0 9 i Pla)=0, x—a isa factor
d P(x) =a(z+1)(z* +4z+2), a#0 i (z—a)(2?+ azx + a?)
6 a Pz)=a(@®>-1)(22-2), a#0 b i P(—a)=0, z+a isa factor
b P(z)=a(z —2)(5z +1)(z* = 3), a#0 i (z+a)(2? —ax + a?)
¢ P(z) =a(z+3)(4z —1)(z® -2 —1), a#0 10 a =2
d P(z) =a(z? — 4z — 4z —
(z) = a(@? —do —1)(z* + 42 =3), a#0 EXERCISE 6
EXERCISE 6B.2 I 1 az=123 b x=—1,2 {2isadouble root}
1 aa=2 b=5 ¢c=5 b a=3 b=4, c=3 czx=1-1,-2 dzxz=-1,3,4 e r=-5-4,4
ca=2 b=-5 c=4 f x=-3,—5 {—5 isa double root}
2 aa=20b=-2 o a=-2 b=2 2 ax=-223 bazx=-3-26 ¢caz=-347
ba=3 =" REVIEW SET 6A
e
aa=1 b=6, c=-7 b (z+3)(xz+7)(z—1)
L 5 1 a 82%+6z+3 b 722 -9z +9
ap=2q=7r=5 b z=3-1-3 ¢ 152% + 3203 + 290 — 4
5 a aj3’ b:2*2’ c=1 , 2 a quotient = 2z + 5, remainder = 3
b 3z° +102% — Tz +4 = (z +4)(32° — 2z + 1) b quotient = 22 — 4z + 2, remainder = —5
Aof 322 —2z+1 is -8, 4
the only real zero is —4. 3 a3, -2 b —4+./5
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4 aa=1 b=-2 ¢c=3
b Aof 22 -2z +3 is -8
the only real rootis = = —3.
5 al b —53 6 a not a factor
7 k=6 8 a=4, b=-1 9 ¢c=3
10 a a=-19, b=— b -5, -1,4
11 z=-3,-1,5
REVIEW SET 6B

1 a 122* — 923 + 822 — 26z + 15
b 4zt — 423 + 1322 — 62+ 9

b factor

19z + 30

2 az2-20+4+4-— _
(z +2)(x +3)

b z-5
T+ 2 r +

3 P(z) =a(dx —1)(22 —2x —4), a#0

4 For k=3, b=27, © =3 or —3.
For k=—-1, b= -5, x =—1orb5.
5 a -3 b -7 6 aa=5 b —12
7 b (z—2)(x?+2zx—9) ¢ 2,-14++/10
_ 8 3 _ 174
8 a=3 b=
9 k =38, the zeros are —1, —2 {—2 is a double root}

10 a a=-20, b=12 b f(z) =2z —1)(z —6)(z +2)
11 2= 4,23
EXERCISE 7A.1 I

1 a gradient = 3, y-interceptis 5

b gradient = 4, y-intercept is —2

¢ gradient = %, y-intercept is%

d gradient = —7, y-interceptis —3

e gradient = %, y-intercept is%

f gradient = —%, y-intercept is%
2 ay=z—2 b y=—-x+4 c y=2z

d y:7%x+3
3 ay=4x—-13 b y=-3x-5 c y=—5x+ 32

_ 1 7 8 —

d y=35z+5 eyf——x—&— fy=
4 a2—3y=-11 b 3z—-5y=-23 ¢ z+3y=>5

d 2x+Ty=-2 e de—y=-11 f 2z4+y=7

g Tr+2y=18 h 6z —y=—40
5 ay:%m72 b y=-2x+4+3 c y=-2

_ 1 2 1 11 2 11

dy=-gz+5 ey=gr—% fy=-j52-%
6 axr—3y=-3 b S5r—y=1 cr—y=3

d 4z — 5y =10 e x—2y=-—1 f 20 +3y=-5
7 a VAunits b (-1, 1) c 3 dy=3z+4
8 ay=3 4:-1 b 2r—-3y=-13 ¢ y=z+1

d 2z +y=-2 ey———x+2 f 324+ 7y=-9
9 aM=ip+2 b R=-3n+2 ¢ T=3z-1

d F=3z4+1 e H=-1z+2 f W=—-}t-2
10 a z+2y=13 b (13,0)
11 a 3z+5y=10 b (0,2) 12 54 units?

EXERCISE 7A.2
1 a 160units b (-1,1) ¢ —3
2 ay=x—4 b y=2x+6 cy:%w—i-%
3 15 units?

d x—3y=—4
d y=1

EXERCISE 7B I

1 a (1,3) b (6, —-3) ¢ (—5,3) d (-1, -2)
2 a3z+5y=9 b (-2, 3) 3 (4,2)
4 az-3y=-8 by=-3x—-4 ¢ (-2,2)
5 a (0,-1) b 25 units?
6 a (—1,0) b 26 units? 7 30 units?
8 a i (50) i (7,—-4) iii (6, -2)
b Hint: Find the gradients of MN and AC.
¢ i 15units®> i 20 units?

EXERCISE 7€ _
1 (-1,-2) and (&, -2 2 /18 units
3 2x—-2y=0 4 (%, -8) and (2, -1)

3073
5 /125 units 6 r—3y=-13
7 (3,—-32) and (4, -1) 8 (2

EXERCISE 7D

1 ay:%m3+2 by=3\/5—l, x>0
c y=3—z* dy:%><2“C
2
e y==-+1 fy=—3x3"+11
xX
2 a iy=xz2+3z i y=18
. 10 .
b 'y:—%ﬁ'i‘ﬁ, x>0 Ily=176\/§
5
c iy=—x2°" i y=4
v=13 y=
d iy=223-9z i y=27
. 1 12 1
e |y:—2—;+36 ii y=323
x

f iy=(@+2)2%+3
3 algy=2x—-1

_ 3.
4 y=1000x10 *

5 a y= q5b5 X 10° b y=10000 x ()*
c y=>5x4~"

6 ay:lOXlO%w b y= 1000

7 algy_——lgw+2 by:gg

8 ay:w% by:@ = 22/1000
9 a K="T7/1 b K =21 10 a3 b Ig4
EXERCISE 7E I

1 alz2| 1| 4| 9|16 c y=3z2—

Y 2 11 | 26 | 47

b y
50

40

30
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2 a 4
24
b c y75\/5+ ﬁ’ x>0
d y=21
3 a 0.25
0.48
b ca=1 b=-2

d y=008
4 al|zyz | 283 8 [ 1470 [ 22.63
yv/z | 741 | 10 | 13.35 | 17.31
b 20

(22.63,17.31)

14.70,113.35)

‘o‘ 4 12 16 20 24 28
c *l:c—‘ri x>0 d y=6.5
y=3 Nk y=
5 a t 1 2 3 4 5
lgM | 0.600 [ 0.800 1 1.20 | 1.40
b ¢ M~ 251 x 1.58!
d ~251l¢g
6 a z? b
c a=4,
=-3
d y =485

4

vz T
8 a a=~4.90, b~ 2.00 ~44.1 m

REVIEW SET 7A e

. 8
7 Plot zy against \/z. y= — — 8, b= —4}
T

b

¢ = 4.04 seconds

1 a +/40 units b (2,5) c z+3y=17
2 y=—-2x+6
3 The gradient of a vertical line is undefined.
4 ax+2y="7 b (7,0) 5 (3, -1)
6 a (—1,4) b 321 units?
7 —%,2—56) and (2, —5) 8 y=2-5
3
10 a y=———, >0 b y=1
Y N z Y
11 algy:%lg:c—f—l b y=10y/z
12 a | 23 1 8 27 64
Ty 8 15 | 3399 | 71
b c y=x2+—
T
y = 50
16 #(3,15)
Py4(E) T
‘oi 16 32 48 64 80
REVIEW SET 7B I
1 y=-3z+7 2 /80 units
2 3
3 ay=5c—= b 393
xT
4 ar:%a+2 bK:%s+3
5 (3,2) 6 5x—8y =31
VT
T al vz |1 | 141|173 2 ¢ y=3r——
Y
— | 25| 3.74 | 4.69 | 5.5
VT
6
b b Y 12.5.5)
. Ve (1.73, 4.69)
(1.41,3.74)
2
<0 vV
‘_0,51/ 05 10 15 | 20 | 25
8 a br+ay=ab
b Hint 0 “ ino b
: cosl) = ————, sinl = ———
a? + b2 Va2 + b2
9 a i (2,12) i (11,0) b 75 units?
71
10 (3, 3)
11

a Plot lgy against x.
1

_1 1
y=100x (10 *)* {a =100, b=10 *}
b y~ 46.4
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EXERCISE SA I—

1 a %C %C c %C d 1%“ e 2—’56
3rc 5rc 3¢ . .
f Tﬂ g Tﬂ h Tﬂ' i 2n¢ j 4nc
kK Ix° I 3x¢ m Z¢ n 4° o ¢
2 a 0.641° b 2.39°¢ ¢ 5.55¢ d 3.83¢ e 6.92°¢
a 36° b 108° c 135° d 10° e 20°
f 140° g 18° h 27° i 210° j 22.5°
4 a 114.59° b 87.66° c 49.68° d 182.14°
e 301.78°

5 a |Degrees| 0 [ 45| 90 (135|180 |225)270 (315|360

o 3T 57 | 3w | Im
Radians | 0 = ™ = = =z 27

INE
ol

Deg.|0]30(60]/90]120|150|180{210|240]270(300| 330|360

I
Ot

Q?W T | 4m s m | 11w o

Rad. il ol el Bl

=
=ff

ol
wly
SE

EXERCISE 8B N
1 a 49.5cm, 223cm? b 23.0cm, 56.8cm?

2 a314m b 930m2 3 a b591lcm b 189 cm
4 a 0.686° b 0.6¢
5 a 0=0.75°, area = 24 cm?
b 0 =1.68°, area =21 cm?
c 0~ 232° area = 126.8 cm?
6 10 cm, 25 cm?
8 all7ecm b rx~11.7 ¢ 37.7cm d 3.23°
9 a a~1843 b 0~ 143.1 ¢ 387 m?
10 25.9 cm 11 b 2h 49 min 12 227 m?

EXERCISE 8C I
1 a 1 A(cos26° sin26°), B(cos146°, sin146°),

C(cos 199°, sin 199°)

ii A(0.899, 0.438), B(—0.829, 0.559),
C(—0.946, —0.326)

b i A(cos123°, sin123°), B(cos251°, sin251°),

C(cos(—35°), sin(—35°))

ii A(—0.545, 0.839), B(—0.326, —0.946),
C(0.819, —0.574)

2 0 (degrees) | 0° | 90° | 180° | 270° | 360° | 450°
0 (radians) | O o g 37" 27 577’
sine 0 1 0 -1 0 1
cosine 1 0 —1 0 1 0
tangent 0 | undef 0 undef 0 undef
N = V3
3 a i Vol 0.707 ii 5~ ~ 0.866
b | 0 (degrees) | 30°|45° |60° [ 135° | 150° | 240° | 315°
: 3 5 4 7
0 (radians) | & | T | 3 | =F = =5 &
i L | L |8 L | 1 |_V3|_ 1
SIS 2 |32 | & 2 2 /2
3 V3| L | 11| V3| 1| L
cosine > | 75| 2 7 5 5 7
1 1
tangent v 1 \/5 —1 =75 \/§ —1

iv 0.866

4 a i 0985 ii 0.985 iii 0.866
i viii 0.707

v 0.5 vi 0.5 vii 0.707
b sin(180° — ) = sin@
¢ sinf and sin(180° — @) have the same value, as P and Q
have the same y-coordinate.

d i 135° i 129° i 2r iv 3x
5 a i 0.342 ii —0.342 iii 0.5 iv —05
v 0.906 vi —0.906 vii 0.174  vili —0.174
b cos(180° — ) = —cosf

(1)

cos(180° — @) = — cos 6, as the z-coordinates of P and Q
are negatives of each other.

d i 140° ii 161° i 4 iv 3

~ 0.6820
~ 0.9135

b ~0.8572 c
e ~0.9063 f

-]
-]

QR

7

Radian
measure

0<0<F |+ve|+ve| +ve

Degree
measure

Quadrant cos @ [sinf|tan O

1 0° < 6 < 90°

2 90° < 0 < 180° %<9<71' —ve | +ve | —ve

3 180° < 0 < 270° 7r<«9<377T —ve | —ve | +ve

4 ]270° <6 <360° |3 <6 < 2| 4ve | —ve| —ve

b i land4 ii 2and3 i 3 iv 2
8 a A6Q = 180° — 0 or w — 6 radians
b [0OQ] is a reflection of [OP] in the y-axis and so Q has
coordinates (— cos 6, sin8).
¢ cos(180° — 6) = —cos 6, sin(180° — ) =sind

9 a 0° sin 6 sin(—6) cos @ cos(—0)
0.75 0.682 —0.682 0.732 0.732
1.772 0.980 —0.980 [ —0.200 [ —0.200
3.414 —0.269 0.269 —0.963 | —0.963

6.25 —0.0332 | 0.0332 0.999 0.999
—-1.17 | —0.921 0.921 0.390 0.390

b sin(—0) = —sin6, cos(—6) = cosf

EXERCISE 8D.1 I
1 a cos@z:ﬁ:ﬁg b cosG::I:%Q
d cosf =0

c cosf =+1
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2 asin9=i% bsin9=i4 ¢ sinf =0 g€ 0=0,m 2w haf%,%,%r,%r
d sinf = +1 ig=23r U jo=3 2 4 3¢
3 asinezﬁ bcosO:f@ ccosG:% 10 a O=km, keZ b9:§+kw,kez
d sing=—12
s 13 EXERCISE SF I
_ 1 _ 1
4 a tanef—f/_ﬁ b tanf=-2v6 ¢ tanf =5 1 a2 b - ¢ —2 d undefined
d tang = — XL _ 2
23 , e Vel f \/5
5 a sinz= Vi3 8= a3 2 a cosecx = %, secx = %, cotm:%
b sinx = é, cosz = —32 _ _ .3 _3 _ 2
5 _ 5 , b cosecz = 5 SecT = g, cotx = 7
c sinx = —4/=>, COSx = ——=
1 via 3 a sin@z—g, tan@z—g, cosecez—%,
d sin:c:—i—:s, cosavzli3 g_ 4 0— 3
. B 1 sect = 3, cot =-
6 sinf = m’ = m b cosx:fé, tanm:%, cosecxzfg,
__3 5
EXERCISE 8D.2 secz = — =, cotz = %5
1 a 6~1.33 or 4.47 b 0=0.592 or 5.69
inp — Y21 2 — V21
¢ 0~0.644 or 2.50 d 0=2% or 3 ¢ smx =g, cosy =35, fanw =5,
e 0~0876 or 4.02 f 0~0.674 or 5.61 cosecz = —Z=, cotz = —=
g 0~0.0910 or 3.05 h 6~ 152 or 4.66 , ) /3 L
i 0~ 1.35 or 1.79 d sinf =3, cosf=—"5 tanf=—15
__2 _
2 a 0~ 182 or 4.46 b 6=0,mn,or2n sect = —Z=, cotf = —V/3
c 0~ 188 or 5.02 d 0~3.58 or 5.85 e sinf = —k. cosf= 2, cosec= V5.
e O~ 1.72 or 4.86 f 0~1.69 or 4.59 5 5
g 0~199 or 513 h 6219 or 4.10 secﬂ:fé, cot3 =2
i 6~3.83 or 5.60 . 3 4 3
f sm@:fg, cosO:fg, tanH:Z,
EXERCISE 8E I
cosecb?:—%, sec@z—%

1 a | b c 14 e 4 a 0=kn ke b 0=Z+kr, keZ
b | B | P "0 ¢ 0=Z+kn kez d 0=kn, kez
cosf | L 0 =L =1 || ==

V2 V2 V2
REVIEW SET SA I
tan 6 1 undef —1 0 1 ) 5 5
T s s
1 a =3 b = Cc 5 d 37
2 a b c d e 2 a % b 15° c 84°
e L | 2 1|8 -1 3 a 0.358 b —0.035 ¢ 0.259 d —0.731
V3 1 V3 1 V3 2 — 3r Im
cosfB | %2 -1 -3 : v 4 111 cm 50 T I
1 _ 1 _ _ 1
tnf | 5 | V3| 5 | V3| -5 6 al b | c | d
] V3 V3
3 a cos120° = —1, sin120° = X3, tan120° = —/3 sin ¢ 2 0 2
b cos(—45°) = %, sin(—45°) = f%, tan(—45°) = —1 cosf | 1 ,% 1 ,%
4 a cos270° =0, sin270° = —1
’ tan | 0 | —v/3 | 0 | —V3
b tan270° is undefined
5 a2 b 1 c3 d 1 e -1 f1
1 4 4 4 7 sing = +¥7 8 a¥l bo ¢l
£€vV2 hi il i2 k —1 1 —V3 ) s
9 a = b ———
6 a 30°,150° b 60°, 120° ¢ 45°, 315° Vi3 V13
d 120°, 240° e 135°, 225° f 240°, 300° 10 perimeter = 12 units, area = 8 units? 11 L&

7 a I elus b 3n Im c Z 4an Vit

4> 4 4 ’74 3’ 35 12 a 150°, 210° b 45°, 315° ¢ 120°, 300°
d 0, 27 e%,% f?ﬂ—’?ﬂ' 13 a == b =X 2x 4r 57

8 a z lx 13n 23 p Zn lix 197 23n ¢ 3x Iz 37387373
6> 67 676 6767676 272 14 COSIf—@ tanx*L secx*—i

9 ag=1I5z b =12, 28 co=r - VIS oV

3> 73 3> 3
- 37 5 o 3 cosecx = —4, cotx = /15
do=12 e g=3r 5x  fg_z x
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REVIEW SET 8B

1 a 72° b 225° c 140° d 330°
2 Y
< OT .
< l -
3 cos(ST”) =0, s1n(37") =-1
b cos(—%) =0, sin(-%)=-1
4 a sin(m—p)=m b sin(p+27)=m
m
¢ cosp=+1—m?2 d tanp = ——
V1—m?
- . . .9
5§ a 160° i % b % units ¢ T units
7 sin@z@, tan@z—@, sec@z—g,
- _5_ 2
Cosec()—\/ﬁ, cotf = =
1 1 1
8 a 23 b 15 c —3
9 a 60=0.841 or 5.44 b 60=3.39 or 6.03

c 0~ 1.25 or 4.39
10 perimeter ~ 34.1 cm, area ~ 66.5 cm?

11 r ~ 8.79 cm, area ~ 81.0 cm? 12 a 0 b sinf
. _ Vo1 _ _ 3 _ 91
13 smaf%, cosa = —15, tana7—33C,

10 3
cosecax = —=—=, cota=———=
Vo1’ V91

EXERCISE 9A —

1 a periodic b periodic ¢ periodic
d not periodic e periodic f periodic
g not periodic h not periodic
2 a  height aboye
60| ground
50 (cm)
40
30
20
10
Oy 50 100 150 200 250 300 350 400

distance travelled (cm)

b A curve can be fitted to the data.
¢ The data is periodic.

1 y = 32 (approx.) il ~64cm
ifi ~ 200 cm iv ®32cm

3 a y e °
IT ° ° ) o

=Y

Data exhibits periodic behaviour.

Y °

il

N = oD

oy 2 1 6 8§ 10 12 *

Not enough information to say data is periodic.

EXERCISE 9B

1 a
31

b=3 b b=5 c b= d b=4

a h~ 0N
L 9 9 O
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6 aa=3b=1 ¢c=0

y=sin2x + 3

y=4sin3z — 2

21“//\ """""""" A\ S —

51 4

ca=5 b=3 c=-2
7 m=2 n=-3

| LT T

B
. Ly =3sin 2z oL

R T rme P SN
Y

EXERCISE 9C I

1 a Ly

e
- O' T 27r:
f Ly
™ 2
< >
S
y=cosx — 1
S . S
7
g
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y=cos3z +1

y=2cos3z +4

y=3cos2x + 5

aa=4, b=3 c=-1 b a=3 b=5 ¢c=3

a y=2cos2zr b y:cos(%)—i-Q
a a=>5, b
b=1,
c=1

W N

y=>5cosx + 1

c y=7%COS6m+%

EXERCISE 9D

1 a Ay

T

< =

y=tanx 42

|
e
]

2 3 %
A/
d Ay 4 .
y= 3tan 2
< % >

g
REEREE B BERE

fy=2tanz — 1
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f EXERCISE 9F.1 I
1 a 2siné b 3cosf c 2sinf d sinf
e —2tanf f —3cos?6
2 a3 b —2 c —1 d 3cos?0
e 4sin0 f cosé g —sin?0 h —cos26
i —2sin?20 j 1 k siné I sinf
3 a 2tancz b tan?z ¢ sinz d cosz
e 5sinx f 2secx g1 h 1
i cosecz j cosz k cosz I 5sinz
3 4 a 1+2sinf+sin?6 b sin?a —4sina+ 4
2 ab:5’c:2 b b=2 c=-3 ¢ tan?a —2tana+1 d 1+ 2sinacosa
3 P:%, g=1 e 1—2sinfBcosf f —4+4cosa—cos?a
EXERCISE 9E.1 I 5 a —tan’f b1 ¢ sin®a
2 2 2
1 a z~0.3,28 66, 9.1,12.9 b z~5.09, 98, 12.2 d sin®z —tan®z e 13 fcos“0 g0
2 axm09,54,72 b z~44,82 107 EXERCISE 9F.2 I
3 a xr=~04,1.2, 3.5,4.3,6.7,7.5,9.8, 10.6, 13.0, 13.7 1 a (1—sin6)(l+sing)
b z~1.7,3.0,4.9, 6.1, 8.0, 9.3, 11.1, 12.4, 14.3, 15.6 ] )
. B b (sina + cosa)(sina — cos )
4 a 116 i ~-11 ¢ (tana+1)(tana — 1) d sinf3(2sinf8 —1)
b i z~1.1,42,74 il r~22 53 e COS¢(2+3COS¢) f 3sin9(sin9—2)
5 a 2~0.446,2.70, 6.73, 8.98 g (tanf 4+ 3)(tan6 + 2) h (2cosf+ 1)(cos6 + 3)
b 7252, 3.76, 8.80, 10.0 i (3cosa+1)(2cosa—1) | tana(3tana —2)
¢ z ~ 0.588, 3.73, 6.87, 10.0 K
6 a o~ 0644 0.644 (sec B + cosec B)(sec 8 — cosec 3)
b o~ —4.56, —1.42, 1.72, 4.87 I (2cotx —1)(cotz —1)
¢ z~ —2.76, —0.384, 3.53 m (2sinz + cosz)(sinz + 3cosz)
7 a z=157 b m=-2 o m=1 2 a l+sina b tang —1 € cos¢ —sing
¢ —1 <sinz <1, so m = sinx = —2 is not a valid 1 cos O
solution. d cos¢ +sing e — f
sina — cos 2
EXERCISE 9E.2 I g sind h cosf i secO+1
1 ag—z 5z Iz lx b g—z, 3z 9r lrx
S aran e EXERCISE 9G I
cz=7%, 5 9 Un
voanard 1 az=0nmIZ Ut or bao=Z 23 5
2 ap__ 5T _4r m 2x  p oo _5n _3m 3n 5m
53’ 3’33’73 47 47 4> 4 czzg,m%" dx:%,%,l%
J— s us s s
CT=—7>"3 72> e no solutions f =027
_ 57 T _ 57 7m llx 137w 17
3 az=3.%.9 br=%F G %6 6 2 az=n b z=Z%, 3¢
4 a x5z Iz b p— 5z Iz 1z 5z Iz 23n
24 44 o 1om 14 120122 120 a4 REVIEW SET 9A I
— s s s T T
5 ar=S5%53 1 ano
b = = —330°, —210°, 30°, 150° 2 a
5v 7m 17 _ 3r 5
i ao=3 2%
__8 4 2r 2r 4x 8
co=f kB g
4
6 == %, T" <
a p— o T Ir 57 13m 4n 197 lix
T 12°3°712° 6 12° 3’ 12° 6
_ 2r 4r 5
bo=3 ¥ & 5 ;
7 1
7T ¢=15 15 is
b
8 aas=-22 b p=-52 28 2 2 L n o
_n ¢} z
20 2
_ 5 _3r 7
9 az=7%,°F b z=2F T B CLITs” OTTIRRNR \SRREESTTSY LTINS, WISERSY SRS
p— L 5Sm 3m 13w 17m 7w
12> 12° 4> 12> 12° 4
dz=2%, %" %", %’T 72" """""""""""""""""""""""" y=cos3r —1
10 z= 73
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c N .
PP Syt
: R
: : : T
3 a minimum = 0, maximum = 2
b minimum = —2, maximum = 2
¢ minimum = —3, maximum = 3
d minimum = —2, maximum = 0
4 a 2w b % cT d %
5 Function Period | Amplitude
y=3sin2zx + 1 ™ 3
y = tan 2z o undefined
y=2cos3x —3 2% 2
Function Domain Range
y=3sin2zx + 1 zeR —-2<y<4
y = tan 2z ac;é:l:i,:l:‘%”, y€eR
y=2cos3x —3 z eR —-5<y< -1

6 y =4cos2z

7
8 a x~115°, 245°, 475°, 605° b z =~ 25°, 335°, 385°
— Tr llx 197 237w — _Ix _ 57 m 3m
9 acz=-g, 5 5 5% b o=—7 — 17
T 4r 5m 10w 1llm 167 177w
~—9°9°"9°"9°"9 "9
w Im 97w 57
dz=73. 9% 71
1 Ccos &
10 a 1 —coséf - c —
sin a + cos 2
d cosecf+ 1
— _2r _©m m 5m — _2r _m m 27m
12 az=-7,-4.3. % b z=-5,-3,3.3

REVIEW SET 9B

1 a The function repeats itself over and over in a horizontal
direction, in intervals of length 8 units.

b i38 ii 5 i —1
ab==6 b b=24

a minimum = —8, maximum = 2
b minimum = —2, maximum = 4
¢ minimum = 5, maximum = 13

Yy=cosx

i@

y=2sinbx — 2

w=tanxz

7 a r=~—6.1, -34 b x~0.8
8 m=3 n=-1

— 37 —x 5 7m 1llmw
9a$72 bx76,6,6
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10 a cosf b —sinf ¢ 5cos?6 d —cosf 3 (1;):12376 4 a (§)=126 b (1) (i):m
11 a 4sin®a —4sina+1 b 1—-2sinacosa 5 a (133) — 986 b (}) (122):66
EXERCISE 10A I 12
6 a ( ) =792
118 2 a4 b 8 c 24 36 5
. 2 10 = 2 10
442 51680 6 a 125 b 60 b i (3)(%)=120 @i (7)()=420
7 17576000 8 a4 b 9 c 81 3\ (1) (11
Rt 108 7 (5) (o) () =462
10B I 1\ /9 2\ /8
8 a =84 b =170
1 a 13 b 20 c 19 d 32 2 13 (1)(3) , (0)(4)
2 1
c =35
EXERCISE 10C.1 I (6 () ()
11, 1,2 6, 24, 120, 720, 5040, 40 320, 362 880, 3 628 800 9 a () =4368 b (%) (5)=1800
1 1
2 a6 b 30 ¢ 1 d 55 e 100 f 21 c (%) (5) =252
>1 2 1 > 10) (6 10) (6 10\ (6) _
etz R 20 @ (3)(8)+ (2) (1) + (%) (5) =om2
’ = 16 10 6 10 6\ __
7! 10! 11! 13! 31 416! e (5)=(5)(5) - (%) (5) =410
4 a5 = % YTom @ Sor | 10 a 6435 b 2520 ¢ 36 d 4005 11 1050
5 a 6x4! b 10x100 e 73x7 d 131x10 |12 a (5)(3)(7) =945 b (5) () =1800
e 81x 7! f62x60 g 10x11! h 32x8! 16 9\ (7Y _
¢ (7)) (o) (5) =347
6 a 11! b 9! c 8! do9 .
e 34 fnt+l g€ m—1) h i1y |13 (%)-20=170
EXERCISE 10C.2  I— 14 a i (F)=66 @i (Y)=n
1 a3 b 6 c 35 d 210 = (12) _ = (11 _
) g b i (Y)=22 i (})=55
2 a i 28 ii 28 3 k=3o0r6 9
15 (4) =126
EXERCISE 10D I . . .
16 a Seclecting the different committees of 4 from 5 men and
1 aWwWXxYZ 6 women in all possible ways.
b WX, WY, WZ, XW, XY, XZ, YW, YX, YZ, ZW, ZX, ZY im
¢ WXY, WXZ, WYX, WYZ, WZX, WZY, XWY, XWZ, XYW, b (")
TV, 20, 700, ZXY, T K () () () ()
] ’ s LAY, J 17 a ~ 22 —462 b 2222 5775
2 a AB, AC, AD, AE, BA, BC, BD, BE, CA, CB, CD, CE, DA, 2 3!
DB, DC, DE, EA, EB, EC, ED 18 a 45, yes b 37128 ¢ 3628800
b ABC, ABD, ABE, ACB, ACD, ACE, ADB, ADC, ADE, | enoce <o
[
AEB, AEC, AED, BAC, BAD, BAE, BCA, BCD, BCE, BDA,
BDC, BDE, BEA, BEC, BED, CAB, CAD, CAE,CBA,CBD, | 1 a p®>+3p%¢+3pg®+¢® b 23+322+3z+1
CBE, CDA, CDB, CDE, CEA, CEB, CED, DAB, DAC, DAE, ¢ 23— 9x2 4 27z — 27 d 8+ 12z + 622 + 23
DPADOC DD, DA D DCE DEADED DECLEAD. | g 27t 27 45 11 0% 60 4 1502 1125
DG T T R g 8a® — 12a%b + 6ab? —b° h 272% — 9% + z — &=
6 1
3 a 120 b 336 ¢ 5040 4 110 i 8% +1204+ — + —
T xT
12 b 24 1512 2
: . 720 b i 24 ’ 3624 "'64;l TP 2 et sttt
a 1 n m b p4 f4p3q+6p2q2 _ 4pq3 +q4
9 a 648 b 64 c 72 d 136 d 81 — 108z + 54x2 — 1223 + z*
10 a 6720 b 240 ¢ 4200 e 1+ 8z + 2422 + 322° + 162*
4 3 2
114 a 120 b 48 ¢ 72 f 1624 — 9623 + 21622 — 216z + 81
g 16z* + 32230 + 242202 + 8xb3 + b*
12 a 3628800 b 241920 1 1
4 2
13 a 720 b 144 ¢ 72 d 144 h 2%+ 42" +6+ 5+
1
14 a 48 b 24 ¢ 15 15 a 360 b 336 c 288 ; 16$4_32w2+24_%+_4
16 a 3628800 b i 151200 i 33600 x? oz
3 x® 4 10z* + 4023 4 802 + 80z + 32

EXERCISE 10E

1 a permutation b combination
¢ permutation d combination
2 ABCD, ABCE, ABCF, ABDE, ABDF, ABEF, ACDE, ACDF,

ACEF, ADEF, BCDE, BCDF, BCEF, BDEF, CDEF, (§) =15

1+ 10z + 40x2 + 8023 + 80z* + 32x°

5 3 10 5 1
z° —5z° + 100 — — + — —
T

a

b 5 — 10z*y + 4023y? — 80x2y> + 80zy* — 32y°
c

d PR

4 64 + 1602 + 2024
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5 al 6 15 20 15 6 1 REVIEW SET 10B I
b i 26+ 122°% + 60x? + 16023 + 24022 + 1922 + 64 1 a 262 x 10* = 6760000
i 6425 — 19225 + 2402* — 16023 + 6022 — 12z + 1 b 5 x 26 % 104 = 1300000
1 1
iiii x6+6x4+152}2+20+—2+%+—6 c 26 x25x10x9x8x7=3276000
xT X X
2 a 3003 b 930 ¢ 2982
6 a 7T+5V2 b 161+ 725 c 232 — 1642 N ) ) 5
50 + 341/3 3 a z°—6z°y+ 122y° — 8y
7 173 b 8lz? + 21623 + 21622 + 962 + 16
8 a 64+ 192z + 24022 + 1603 + 60z* + 1225 4 6 4 20000 5 60 6 —103+74v2 74200
b 65.944 160601201 8 (3)23_3@)24:_160
9 aa=2 and b=¢€" b T3 =6e2® and Ty = €3 9 a 3024 b 840 c 42
5 4 3 2
10 2z° + 11z* 4 24x° + 262 + 142 + 3 10 g=0or+ /% 11 4320 12 k= 180
11 a 270 b 4320
13 a 43758 teams b 11550 teams ¢ 41283 teams
EXERCISE 10G _ d 3861 teams
1 a 1))+ () @e)2 (3 )(2x)1°+(2x) 14 n=7 15 k=-1 n=16
15 2
b (32)' + (] )(3w)14( )+ (1) 3218 (2) + EXERCISE 11A
215 _
+(15)62) (2 ) +(2 ) 1 a (;) 7i + 3j b ( 6), —6i
1 2
o ()@ ()4 (¥) o (-2)'+ 2\ g :
19 3120 c (75), 2i — 5j d (6)’ 6j
+ ()0 (-2)"+ (-2) 6 )
2 a Ts—( )(290 )1055 b T4:(g)(x2)6y3 e <3 ) —6i + 3j f (_5>, —5i — 5j
9 8 . N .
¢ Tio=(y)a®(-2) d To=(})@?)3(-L)" | 2 asi+td b 2
3 a ('7)2831=10264320 b ('})2°37 = 55427328
—_—
4 a (0)17(=3)=-3240 b (7)13(-8)7 = —262440 4 2
5 a 144 b 5376 ¢ 2304
6 a T.41= (Z)w7*TbT b b=— 3
15\ o5 _ 9 3 _ c 2i — 5j d —i—3j
7 a (10)2°=9609 b (3)(-3)% = —2268 7
—1
8 a (10)3%25=1959552 b (§)2%(-3)% = —4320
¢ (5)23(-3)>=—4320 d (7)28(-1)* =126720 s -3
9 k=5 10 o =3 11 b a=5 b=2
12 (g)=28 13 2(3)3%0 — (7)3%° = 9185420
14 a (7)3%(-2)*=15120
. (4 —4 .
b (7)3%(-2)%+3(5)3%(-2)% = —52920 3 a i (1) 4i +j i (_1), —di —j
8\ o5(_r\3 _ T(_5\l — _ _
15 a (3)2°(-5)°-3(})27(-5) 208 640 i (,gl)> i 5 - (g) .
b (5)22—(%)2 80

18 n =6 19 84x3 20 k=-2, n=6
REVIEW SET 10A I

1 ann-1), n>2 b n+42 2 28

3 a 24 b 6 4 a 900 b 180

5 aa=¢e" and b= —€e""

b (eac _ e—a:)4 — 6493 _ 4621‘ 16— 46—2.7: + 6—4.70

6 362+ 2093 7 Tt does not have one. 8 ¢c=3
9 a 720 b 72 c 504 10 2500
11 a 252 b 246 12 (17)25(—3)5 = 43110144

13 8(5)-6(%)=84 14 a=+4 15 k=0or+2

3 . . . (4 Lo
v <_4>, 3i — 4j vi (1), di+j

g —_— . . .
AB and DE. They have the same magnitude and direction.

— . — —
BA is the negative of both AB and DE. They have the same
magnitude but opposite direction.

O g G

1

o

=
1)
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« (%) * (%)

s (D) v (B) < (F) < ()

EXERCISE 11B I

1 a 5 units b 5 units ¢ 2 units
d /8 units e 3 units
2 a \/5 units b 13 units c 17 units
d 3 units e |k| units
3 a unit vector b unit vector ¢ not a unit vector
d unit vector e not a unit vector
4 a k=4=1 b k=41 c k=0
— 41 — 13
d k== 75 e k==
5 p=4+£3

EXERCISE 11C I

v () () < (n) < ()
= (3) (5) < () (4

2o (7)) 2 (5) < (5) <)
= (5) (%)

-
o -]
o
I
lemlo‘;CI‘D
\_/\-/
) -
/N N
[QI
— ——
(1]
/N
—
s o
SN~—
-}
I/~ N OO . .
I
WU‘

a
-]

(%) »(5) = (%)

In each case, the result is 2p + 3q = ( fl )

6 a \/1_3 units b \/ﬁ units c 5\/5 units
d \/1_0 units e \/E units

7 a /10 units b 24/10 units ¢ 2v/10 units
d 3+/10 units e 3+/10 units f 2+/5 units
g 8+v/5 units h 8v/5 units i 5 units
j \/gunits

8 a 3i+2f b —i+ 9j c 6i—j d 7j
e 2 units f 2\/E units

EXERCISE 11D

va (D) 2 (F) (%) o (%)
« (5) ()
2 aB42 b C22) 3 a (f) b Q3 3)

E -
L]
/
Al
——

-5
b (71
5 aﬁ:(kf?’), | AB | = \/16 + (k — 3)% = 5 units

¢ D(—1, —2)

b k=0 or 6 c :
:82(3,6)
A(-1,3)
Bl(S,O)‘
- o¢ T
6 a AB=(2), AC=
= 8= (3) x= (%)
— —> — — — — 1
b BC= + AC = —-AB + AC cBC:(_G)

EXERCISE 11E I
1r=3 2 a=-6

- . . . . - .
3 a AB is parallel and in the same direction as CD, and 3 times
its length.

b RS is parallel and in the opposite direction to KL, and half
its length.

¢ A, B, and C are collinear. Xﬁ is parallel and in the same

—
direction as BC, and twice its length.

c B(3+2V2, 2-2V2)
EXERCISE 11F

1 a 6ms! 1ms-! 7ms— !
Tms™! .

b 6ms—t . 5ms™?t
T Sms 1 Tms !

2 a 1.34 ms™! in the direction 26.6° to the right of intended
line

b i 30° to the left of Q ii 1.04ms™!
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3 a 24.6 kmh™! b ~ 9.93° cast of south
a 82.5m b 23.3° to the left of directly across ¢ 48.4 s
5 a The plane’s speed in still air would be ~ 437 kmh—1.

The wind slows the plane down to 400 kmh—1,
b 4.64° north of due east

=

EXERCISE 11G I

[z _ (3 1
te 1 (5)= () (i) rem
i 2=3+¢t y=—-4+4t teR
T —6 3
(2)=(3)+t(3) ter
z=—6+3t y="Tt teR iii 7z — 3y = —42
() _ (-1 -2
© 1 (5)= () (7)) rem
i x=-1-2t, y=11+t, teR
2 azxz=-142t y=4—t teR

b [ ¢ 0 1 3 = —1
Point | (—1,4) | (1.3) | (5. 1) | (=3.5) | (-9, 8)

ili 4 —y=16

-3

il o +2y=21

3 a When t=1, =3, y=-2, . yes b k=-5

4 a (0,8) b It is a non-zero scalar multiple of ( -1 )

(-t

EXERCISE 11H

(1)

1 a (1,2 b YA
9 o(1.2) t=0
¢ (75) T Ol Ta3.-3) t=1 =
d v29 cms—! ““(5, —8) t=2
e (7,—13) t=3
v .‘(
2 a (z>:(§)+t(f5),t>o b (8, —4.5)
¢ 45 minutes
-3+ 2t
3 a ( ) d Y
—24 4t ',‘(2)8) -
2 ) _
b 21,6) t=2
(8) t=13 0.4¢
¢ it=15s =1 (L2)¢
i t=05s tes (2200 .
. O T
t=0 (—3,-2)e Y
4 a i (—4,3) ii <152) ili 13ms™!
- = 2 T -1
b 1 (30) i iii /5 ms
120 205 35
s e (*90) b <10\/5) ¢ (*84)

7 a Aisat(4,5), Bisat (1, —8)

b For Aitis (_12> For B it is (?)

¢ For A, speed is v/5 kmh~!. For B, speed is /5 kmh—1.
d Yacht A: 2x+y =13, YachtB: x—2y =17

—~

e Yacht A moves with gradient —2; Yacht B with gradient %
So, their paths are perpendicular.
f no

z1\ (-5 3
o a ()= (W)re (D) =0
: :cl(t):—5+3t, yl(t):4—t, t>0

b speed = /10 km min—?!
¢ a minutes later, (¢ —a) min have elapsed.

() ()
oxe(t) =15—4(t—a), y2(t)=7—-3(t—a), t=0

d Torpedo is fired at 1:35:28 pm and the explosion occurs at
1:37:42 pm.

REVIEW SET 11A I

5 A Y A T N
1 ax7(1)75l+], y—(_2)—l 2j

b i6i—j il —9i — 4j
2 a 3) b
—1 3
(V) H
c
1
d \/Eumts

v ) ¢ 5 units

2 -3 .
5 a _3 b (76) ¢ /34 units
6 a Y
C2<1,2)
TS SRR .
b e

N [

B(-3,-1) y

7 a 11.5° east of due north b ~ 343 kmh~!

T —6 4
(3) = (&) (%) eem
b x=-6+4t, y=3—3t, tcR

6\/E>

8 a
¢ 3x+4y=—6
—2v10
b (1) lar multiple of ( 2
10 1S a non-zero scalar multiple o 5
T 5 4
o (5)=(3) (i) +e=
b (28,27) ¢ (8)
6
REVIEW SET 11B I
s (4N . woRd T2\ o s
1 a |AB7(O)741 ii B 7(_4>7 2i — 4j

il CA— (‘f) = 2 + 4

9 m=10 10 <

11 a (5,2)

12 a (—4,3) d 10ms™!
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— —
b BC and CA. Each vector has components of the same 20 1 -8 -14 9 -4
magnitude, but differing signs (which do not affect the length 2 a 8 10 -2 b 12 -6 14
S0 SR 1 -5 18 -5 3 —4
of BC or CA).
— 2 . . 14 -9 14
¢ AC <—4)’ A4 c | -12 6 -14
5 -3 4
2 a /13 units b /10 units ¢ /109 units .
L Friday Saturday 187
— 412 — 41
3 a k=+43 bkle:ﬁ 4 (4) 3 a 85 102 b 299
92 137 101
a M(-2, 4) b 5 units 6 m=5 52 49
7 a breeze 1.72 1.79
27.85 28.75
v 4 a i 0.92 ii 1.33
) [v] 2.53 2.25
1141ten(?ed actual 3.56 3.51
direction flight 0.07
90 0.90
b subtract cost price from selling price c 0.41
—0.28
b i isosceles triangle .. 2 remaining angles = 89° each, —0.05
breeze makes angle of 180 — 89 = 91° to intended
direction of the arrow. 5 a L R b L R
1 speed 23 19 fr 18 25 fr
ii bisect angle 2° and use sin1° = ZT 17 29 | st 7 13 st
speed = 2|v| sin 1° v 31 24 ) mi 36 19 ) mi
0 5 C L R
(3 (1) (3). vex Y
24 42 st
9 a i —6i+ 10j il —5i — 15§ 67 43 mi
iii (—6—5¢t)i + (10 —15¢)j, t>0 6 az=-2 y=-2 b z=0 y=0
b t = 40min (% h), yachtis ~ 9.33 km away from the beacon. 1 3 1 3
7 a A+B= . B4+A=
5 4 5 2 5 2
10 a i (x)=(73)+t(71>,teR 6 3 6 3
v 8 a (A+B)+C:<_1 6), A+(B+C):<_1 6)
iix=24+4 y=-3—-t teR
— .2 I
b i (x):( 1)+t(3>,teR EXERCISE 12B.2
Y 6 —4 1 a ( 12 24) b ( 2 4)
il 2=-1+43t y=6—4t, teR 48 12 8 2
11 a z1(t) =2+t yi(t)=4—-3t t>0 1 g (-3 -6
b 2o(t) =13 —t, ya(t) = [3—2a] +at, t > 2 S N 1 (—12 —3)
¢ interception occurred at 2:22:30 pm 3 5 6 114
N o " .1
d bearing ~ 12.7° west of due south, at ~ 4.54 km min 2 a ( 2 8 7) b (0 41 )
EXERCISE 12A I c 5 8 11 d 5 7 14
3 14 11 2 16 9
1 alx4 b 2x1 c 2x2 d 3x3
12
1.95 48
3 12F =
2 a2 16 1) po[ 230 24
0.45 12
. 2.95
c total cost of groceries 75 \ «<— DVD 136 \ =— DVD
1000 1500 1250 40 50 55 40 4 aA=| 27 J«—Bluray B=| 43 ]<— Bluray
s [ 1500 1000 1000 4 [ 25 65 44 30 102 /' <— games 129 ) «— games
800 2300 1300 35 40 40 35 647 \ <— DVD
1200 1200 1200 35 40 35 50 b 5A + 2B = | 221 |<— Blu-ray
768 | «— games
EXERCISE 12B.1 I ¢ total weekly average hirings
1 9 1 b 6 8 5 a A B C D b A B C D
a3 3 -1 1 35 46 46 69 26 34 34 51
3 4 0 0 58 46 35 86 43 34 26 64
c ( 6 -1 ) d (_11 _3> 46 46 58 58 34 34 43 43

12 23 23 17 9 17 17 13
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EXERCISE 12B.3 I

1 a3A bO ¢ -C d 0 e 2A+2B
f -A-B g€ 2A+C  h4A-B i 3B
2 aX=A-B b X=C-B ¢ X=2C-4B
d X=1A e X=1B f X=A-B
g X=2C h X=1B-A iX=3A-0)
3 6 3 i
_ _ 2 4
sax-(30) ox=(3 )
4 4
c

X <—1 —6)
= 1
L -3

EXERCISE 12C.1 I

(11) b (22) ¢ (16) 2 b (w = y 2)

P= (27 35 39),

4
3
2
4
b totalcost:(27 35 39) 3 | =$201
2

-3

total points = ( 10 6 3 1 ) = 56 points

EXERCISE 12€C.2 I

N LN [N N

1 Number of columns in A does not equal number of rows in B.

2 am=n b 2x3 ¢ B has 3 columns, A has 2 rows
3 a does not exist b (28 29)
2 0 3
4 a (8) b 8 0 12
4 0 6
—2
5 a (3 5 3) b | 1
1
32 24
6 aQ=|[ 25 16 bP:(iég)
13 9 ’
32 24 1.19 75.28
¢ QP={25 16 |( =)= 5455
13 9 : 29.42

It represents the total value of sales for each pen colour.

d $75.28 + $54.55 + $29.42 = §159.25

12.5 2375 5156
c= ( 9.5 ) N= (2502 3612)
( 78 669.5 ) income from day 1
1
2
3

65589 income from day 2 ¢ $144258.50

7 3 19
8 a R= bP*(G 9 22)

SR

48 70 .
( 52 76) d i $48
The clements of PR tell us that, if all the items are to be
bought at one store, it is cheapest to do so at store A for
both you and your friend. However, the cheapest way is to
buy paint from store A, and hammers and screwdrivers from
store B.

ii $76

EXERCISE 12€C.3 I

1 a
d

N
O T D T =a

W
T

AZ + A b B2+2B ¢ A3 —2A2 4+ A

A3 + A2 —2A e AC + AD + BC + BD
A2 + AB + BA + B2 g A2 — AB + BA — B?
A% 4+ 2A +1 i 91 — 6B + B2

A3 =3A —2I, A*=4A-3I

B3 =3B — 2I, B* = 61 — 5B, B®° = 11B — 10I
C3 =13C — 12I, C5 = 121C — 1201

i I+2A ii 21 — 2A iii 10A + 61
A% + A+ 20 c i —3A ii —2A iii A

o

A=0 o A—-1=

[N
Nl= Nl

5 For example, A:(O 1) gives A2:(0 0).

a
(4

0 0 0 0
a=3, b=—4 b a=1, b=8
p=-2 qg=1 b A3 =5A —2I

A% = —12A + 51

EXERCISE 12D.1

1 a

3 0) 1 2)
=3I, 2 5
(0 3 (—5 3

10 O 0.2 0.4
b ( 0 10) =101, (—0.1 0.3)
2 a -2 b —1 c 0 d 1
a 26 b 6 c -1 d a®>+a
4 a -3 b -3 ¢ —12 5 Hint: Let A:(‘; Z)
6 a i detA=ad—bc il detB=wz—zy
_ (aw+by ax+ bz
m AB_<0w+dy cm—l—dz)
iv det AB = (ad — be)(wz — zy)
7 a detA= -2 detB=-1
b i det(2A) = —8 i det(—A) = —2
iii det (—3B) = —9 iv det (AB) = 2
L (5 —4 1 0 .
8 a 4 (1 9 b 1 1 ¢ does not exist
10 L /2 0 ‘
d (0 1) e ;5 (1 5) f does not exist
1 7T =2 1 2 —4 R -3 -1
g _1_5(—4 1) Pl o3) Fl2 1
1 2 -1 1 k1
9 a ,k#-3 b — , k#0
2k+6<6 k) # 3k(0 3) 7&
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1 k _9
€ m(—l k+1)’ k#—2orl

1 ko —k
d — . k#0or—1
k(k+1)<3 k—2) 7 0or

1 11—k
em<_2k k2 ), k#00r2
1 3k -2
S k+#—4orl
(k+4)(k—1)(—k2—2 k+1>’ # —4or
EXERCISE 12D.2
L 3
:.x<‘1l 3) 2 aX=ABZ b Z=B!A"IX

3 A2=2A-1 A l=21-A

4 a A l=41-A b A=l =51+ A
c Al=3A-2I

6 If A~ exists, that is, detA # 0.

EXERCISE 12E

(2 3)(G)=()

1 a

b

_ 32 _ 22 _ 37 _ 75
2 az=577,y=7 T=—3 Y=
_ 17 _ 37 _ 59 _ 25
rT=13 Y= 713 T=13 Y= 713
_ 1 _ 55
e x=—-40, y=—-24 T=37, Y=3%
4 13
v T3 9 _ (-1 3
3 b |X(1 4) ||X7(2 4)
3
13 3 19 6
v 7 7 - _ 7 7
“'X_<_g _§) iv X_<2 _§>
7 7 7 7
(2 =3\ [(z\_ (8 B
4 a |(4 71>(y>7(11)’ det A = 10
il Yes, x =25, y=-1
. (2 k z\ (8 _
o (2 5)(5) = (8) ann- -
8+ 11k 5
it k#£-L z= Ly =
T T S VT Tk
iii k= —2%, no solutions

PR

REVIEW SET 12A I

4 2 9 6 2 0
sa(H0) (0 h) ()
2 2 -5 —4 76
d (2 —5) € (—2 6) f (4 —11)
-1 8 w3 2 : i 2
g 2 -4 -6 -8 0 -1
(9 4 W (-3 -0y, (33
! 8 1L
6 12
2 aa=0 b=5¢c=1, d=—-4
b a=2 b=-1, ¢c=3, d=8
3 aY=B-A bY=1A-0 c Y=A!B
d Y=CB! e Y=A1C-B) f Y=B'A

4 a 4L b —2L

10 —12 2 ¢ _3 .
(—10 4 ) b (,4 Y 11) ¢ not possible
6 a A— A2

c 4A% —4A +1

a

b AB + A2 — B2 — BA

7 A3 =27A 4+ 10I, A% = 145A + 541
8 a=4, b=-7
9

I 4 1 5

2 . 3
a - b does not exist c 1

-3 3 -2 -3

10 Unique solution if k # %.
11 az:O,yzfé b z=12 =21
12 b (A-DA+3)=2A-1

REVIEW SET 12B

3
4 2 2 -2 -2 3
1 a2 4 b 0 4 c i -
3 4 -1 -2 2 I
2 2
2 aA-B=|4 1 b i Book 2 (hard cover)
3 1 ii $101
4 aX=1i(B-A) b X = 3(2B — 3A)
c X=1(B-A)
1
2

a
Il
7N
o |
N |
[N
~_

4 8 L2
6 a0 2 b |0 % e (11 12)
6 4 3 9
2
d BA does not exist
7 a detB#0 b AB = BA
8 a detA=5 b det(—2A)=20 ¢ det(A%) =25
9 am:%‘,y:% b xz=-1 y=3

10 kER, k#3,-22

—6 2
11 Uni lution for k# —3orl. o= —0/ y=—0
nique solution 1or # or x E_1 Yy 1
12 AGA-2D)=1 A l=2A-2
EXERCISE 13A I
1 a7 b 7 c 11 d 16 e 0 f5
2 a5 b 7 cc
3 a-2 b7 c -1 d
4 a -3 b 5 c —1 d 6 e —4 f -8
g1 h 2 i 5
EXERCISE 13B
1 a Af(t) b no
e (89 i 0ms!
f(t) =452 — 4.8t2 i 9.6 ms1
ili 19.2 ms™!
iv 28.8 ms~!
- » 1
0
v 1 2 3
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2 a @ Point B Gradient of AB
0 (0, 0) 2
1 (1,1) 3
1.5 (1.5, 2.25) 3.5
1.9 (1.9, 3.61) 3.9
1.99 (1.99, 3.9601) 3.99
1.999 | (1.999, 3.996 001) 3.999
an Point B Gradient of AB
5 (5, 25) 7
& (3,9) 5)
2.5 (2.5, 6.25) 4.5
2.1 (2.1, 4.41) 4.1
2.01 (2.01, 4.0401) 4.01
2.001 | (2.001, 4.004001) 4.001
T e

The gradient of the tangent to y = x2 at the point (2, 4)

is 4.

EXERCISE 13C I

1 a f(2)=3
2 a f(0)=4

b f(2)=0
b #(0)=—1

3 f(2)=3 fl(2)=1

EXERCISE 13D

1 a fl(2)=1 b f'(z)=0 c fl(z)=2
2 a W_o_y P
dx dzx dzx
3 a3 b —-12 ¢ 9 d 10
EXERCISE 13E I
1 a f/(z)= 3> b f/(x) = 6x>
c fl(z) =14z d f’(a:):%
e flz)= o f @) =22+1
x2
g f'(z) = —4z h f/(z)=2z+3
i f(x)=22%— 12z i f'(a:):g2
X
2 6 5
k f’(x):f;+m—3 1 f'(a:):2m7;
! 3 ! 1
m fiz)=2z+ , nf(w):—%\/5

o f/(z)=8z—4 p
d
2 a ¥ _75:2_28s b
dx
d 2
c W__ 2 d
dx 53
d
e —y:10 f
dx
s
3 a6 b ‘2/”3 ¢ 2210
2 3 1
f . 4
3 T $ +4w2
4 a4 -6 ¢ 7 d

f(x) = 322 + 122 + 12

d;

9 _ 2rx
dx

d

& — 100
dx

d,

Y 12ma?
dx

d 2-—92?

h 622 —6z—5

13 1
1 € 3

d
y:4x+1

e 2r—1

2 1
6 a fl(z)= _+1 b f/(z) = —
Vv 3V/x2
¢ fl(a) = —— d fl@)=2— ——
z\/T 2/
2 _
e fllxy=— " _ f fl(z)=6z— 2
f@=- ['(@) =6 = 3va
—25 9
! = — h f =2 —
€@ =5 f@)=2+ 55
d d
7 a W _ 4 i, el is the gradient function of y = 4z — 3
dx 22’ dx T
from which the gradient at any point can be found.
ds _, ds . .
b — = 4t+4 ms~', — is the instantaneous rate of
dt dt
change in position at the time ¢, or the velocity function.
dc
c P 3+ 0.004x $ per toaster, is the instantaneous
T i

rate of change in cost as the number of toasters changes.

EXERCISE 13F.1

1 a gf(zx)=(2x+7)? b gf(z) =222 +7
c gf(z)=+v3—4a d gf(z) =3—-4yz
e 9() = Fof@)= 5 +3

2 Note: There may be other answers.
a g(z) =23 f(x)=3z4+10

b g(m):i, flz)=22+4
c g(z) =z, f(z)=2-3z

d g(z) = 37‘; Fz) = 30 — 22

EXERCISE 13F.2 I

-2

1 au-“ u=2zx-1 b v, u=x°—-3x
_1 1
c 2u 2, u=2—2a2 d v’, u=2a3—22
e 4u3 wu=3-=z f 10u=!, u=22-3
d; d;
2 a %Y _g4z-5) b &Y — o 2)2
dx dx
d 1
d—z:%(ZSxfo) 2 % (3—22z)
d d
a Y= 121 32)3 e o _18(5-2)2
dx dx
d _2
f —y—%(2x3—x2) 5 x (622 —22)
dx
d
g &Y= _60(50—4)3
dx
d
Yo 43z — 22)2 x (3 — 2)
dx

dy 2\ 2 2
i 2 =6(a2-" 2¢ + —
Idm (x w) ><<m+m2>

1 3

3 a-L b-18 ¢c-8 d-4 e-3 £0
4 =3, b=1 5a=2 b=1

d d: -2
6 a Y32 —x:%y 5 Hint: Substitute y = 3

dx dy

d d d

& {chain rule} =1

de dy dy
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EXERCISE 13G

1 a

(4

3 a
4 b

fl(@)=2z—1 b f/(z) =4z +2

-1
2

fl(z) = 2z(z + 1)% + %mz(m +1)

d

L~ 2w(2w — 1) + 222

dx

d

d—y = 4(2z + 1)3 + 24z (2z + 1)2

X

dy TR _1
%:21(3—1)2—51:2(3—1) 2

d 1

d_y:%x 2 (x—3)2 +2y/z(z — 3)

X

d

d—y = 102(32% — 1)2 + 6023 (322 — 1)

i

dy 1 -3 23 242

- = 2% (z — 22)3 + 3Vz(z — 22)2(1 — 22)
—48 b 4061 c i d
z=3 or 3 c <0 5 xr=—-1 and z = —

5

EXERCISE 13H I

1 2% __ T dy  2z(2x+ 1) — 2z
dr (2 —x)2 dr (2z + 1)2
c dy _ (@® —3) — 22
dzx (1;2 —3)2
1
gy _zw T2 +2E
dx (1—2x)2
o Gy _ 20227 — @ —3)(3-20)
dx (3z — x2)2
+ 1
¢ W _ (1-32) + 3a(1—3z) ?
dx 1— 3z
7 28
2 al b 1 c —L a -2
. dy .
3 b i never {d— is undefined at = = —1}
X
ii <0 and x=1
4 b iz=-2+V11 i z=-2
EXERCISE 131 I
1 a f’(a:) — 4ed b f’(x) — 7
c fl(z) = Qe 2w d f'(z)= 1.2
e fl@)=—e f f(z)=2e""
z T _ eiz
g fl(x) =2e* +3e7° h f'(z) = —
i ! —z? - ’ % —1
i f/(z) = —2ze i flm)=e¢ —
k f'(z) = 20e2® I f/(z) = 40e=2*
m f'(z) = 2>t n fl(z) = Let
o f'(z) = _4pel—2a® p f'(z) = —0.02¢0:02¢
2 a e®+4ze® b 322¢—% _ g3¢—=
T __ LT 1 _
¢ xe . e d T
T er
zet — e
e 2xe3% 4 3x2e3® f 2
z\/T
1 1 = _z
1,72 — 3 - e® + 2+ 2e
g 5z e T—ze’”® Nt

5
3

9 - _
3 a 108 b —1 c V] 4 k=-9
d 4
5 a Y _972 6 P=(0,0) or (2,—)
dx €2
EXERCISE 13) I
1 2 1-2
1 a @:— b @: d—y: ol
dr =z dr 2x+1 dr x— 22
2
d @:__ E:Qxlnw—i—w
dx T dx
dy 1—Inx dy e”
f —= —Z =] —
dx 22 & dx e et T
h dy 2Inz i dy 1
de =z dr  2zvInz
d —= d In(2 1
i o _ ¢ —e Zlnx k Z_ n( x)Jr—
dz z dz 2./ VT
dy Inz—2 dy 4
1 == m —= =
dz  z(lnz)?2 dr 1—=x
dy 222
n = =In(z?+1 —_—
S A
3
2 aW_ps  p B3 dy _tr 1
dx dr = dz 4+
dy 1 dy 6 2
d = = e — = In(2 1
de x—2 dx 2x+1[n(m+ )
d _
f_y:1 In(4z) g@:_l
dz x2 dz T
b dy 1 i dy -1
de  zlnz dz  z(lnzx)?
d; —1 d; —2 d 1
3 a _y: —y: —y:1+—
dx 1—2z dr 2x+3 dx 2x
d dy 1 1 dy 1 1
de  z= 2(2-2) dr  x+3 z-1
dy 2 1 9
£, - '(z) =
dx m+3fx g fi(z) 3x—4
1 2x 2x + 2 1
h f(z) == i fl(z)= -
f'(@) 1:+1:2+1 (@) 2+2x -5
4 a2 b -2 5 a=3 b=—e¢

EXERCISE 13K I

d d
1 a ¥ = 2cos(2z) b 2¥ —cosz —sinz
dx dx
d d
c -3 sin(3z) —cosz d - cos(z + 1)
dx d
d d 5
e L = 2sin(3 - 22) ! N
dz dz  cos?(5z)
g @:lcos(ﬁ)—i—?)sinw h _y:L
dr 2 2 x  cos?(mz)
d
i 2= dcosz+ 2sin(2z)
dx
. 1
2 a 2x—sinz >— —3cosx
cos? x
c efcosx —eTsinx d —e Tsinx+e Fcosx
2x
e C,OSI f 2e2® tanx + 5 g 3cos(3x)
sinz cos? x
6
1 . - .
h —§sm(%) m j cosz —zsinz
rcosT —sinx
k — I tanz +

22

cos? x
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1 i — —
3 a 2xcos(z?) b ———sin(vz) ¢ __TRE 10 (=2, 19) and (1, -2)
2\/x 2,/cost dy -1 d2y -3
d 2sinzcosz e —3sinzcos?z 11 a dz —2(5 — 4z) a —4(5 — 4z)
f —sinzsin(2z) + 2 cos z cos(2z) 12 a 5cos(5z)In + sin(5x)
g sinzsin(cosz) h —12sin(4z) cos?(4z) x
i cos 2sin(2x) b cosx cos(2z) — 2sin z sin(2x)
I — ——
sin? x cos?(2z) 5 =2z
—zx
K 8 cos(2z) —12 ¢ —2e”tanz 4 cos2
T T340 oc2(Z) tand(Z)
sin® (2x cos“(%)tan®* (% V3
9 (2z) (3) tan(3) 13 £
4 a —3 b 0 14 a f/(z)=Sz(z2 +3)3
1 1
EXERCISE 13L I lo(@+5) 2 —2(x+5)°
b g'(z) = 2 .
1 a f/(z)=6 b () = — . @ 1
2 7 _ 23 7 [
2wt 15 a f/(2) = & b (2= -l
c f'(z) =12z -6 d f(@)=—j 16 a 10— 10cos(10z) b tanz
20 in(5
e f/(x)=24— 48z f f'(z) = 1) ¢ 5cos(5z)In(2z) + sin(52)
d? d? 30 ==
2 a —g:—ﬁx b _1;:2__4 REVIEW SET 13B
dx dx T 1 a -3 b 3 c -1 2 f'(1)=3
Py g -3 d*y d
¢ g2 a” d de?2 o3 3 a d—y:4x b when z =4, gradient = 16
X
d? font — _
e d_32/ = 6(z2 — 32)(52% — 15z + 9) ¢ when gradient = —12, z = —3
- d 1 1
d2y 2 4 a _y :31,2(1712)2 7934(1712) 2
f — =24 —— dx
wo z-3)@+ ! ~ 36 3@y
d T — T — s(xz* —3x)(x
3 a f(2)=9 b f(2) =10 c f(2) =12 b = 2
dx z+1
5 az=1 6 z —1)0 (1 d?y 4 d?y -5
- J 2 _ = - J 3. 2
b x=0 +/6 f(x) — 0| + 5 a ) 36z 3 b = 6z + Sz
ffla) | + |- | + e 3 1
6 (1, 7 a f/ = b f/ = - —
T oo (1) F@= == b @)= =2
7 b f"(z) = 3sinzcos2x + 6 cos x sin 2z 8 When z =1, Z_y =0.
x
d? 1 d? 1
8 a Ly _ Ly _Z dy 322 -3 dy e*(r —2)
dz? 22 dz? =z 9 a = =— b —=—7+-—
o de  x3—3x dx x
cﬂ—i(l—lnx) 13
dr2 ~ z2 10 z=—-3, 3
9 a f(1)=0 b f'(1)=3 c f"(1)=0 11 a f(m)=n+1 b f(Z)=2 c f”(%):—zg
. . dy d%y L . _1 1
10 Hint: Find — and ——= and substitute into the equation. 12 a f/(z) = 1.2 cos(4x) — 4x 2 sin(4x)
dx dx? 2 5 L ’
REVIEW SET 13A I (@) = =gz 7 cos(4w) — 4w * sin(4z)
1
1 a -1 b —1 c 8 — 162 cos(4x)
d (L&) ~ —0. (%)~ —6.
2 a fl(z)=2x+2 b == 6o b fi(35) & 0455 JT(F) ~ ~6.38
, ) r 14 az=-6+v33 ba=+v/3 ¢ 2=0£3
3 : ;/E’;))_ _91'3';‘“5 ) 15 a f(z) = —5sindx
=-19.2 ms™ 1) — —x 3rm bm Im
(the negative sign indicates travelling downwards) b f/(w) =0 when == 3,5 5, 5, 0<asw
d
4 a f(3)=-17 b f/(3)=-17 ¢ f’(3)=—6 16 d_y = 3bcos(bz) + 2asin(2z), a =2, b=+l
X
dy 3 dy 1
5 a - =6r—dr b - =1t23 EXERCISE 14A
d d 1 =— — 4y = — — 92 —
6 (0,0) 7 a W _g.2.0%42 b W _ 2 1 ay Tr+11 b x—4y 8 cy 2z — 2
dx de *+3 =z d y=—-2x+6 e y=—-5x—9 f y=-b5xr—1
9 a 5+32x72 b 4(3z2 + )3 (62 + 1) 2 a z+6y=>57 b x4+ 7y =26 ¢ r—3y=-11
c 2z(1 —x2)3 — 6z(2? + 1)(1 — x2)? d z+46y=43
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3 y=21 and y=—6 4 (1,2V2)

5 k=-5 6 y=-3rz+1

7 a=—-4,b="7 8 a=2 b=14

10 a z—-3y=-5 b z—-9y=-4
c r—16y=3 d y=—-4

11 a y:2x7% by:f27x72;§2
¢ 4x + 57y = 1042 d z—2y=-1

12 a=4, b=3

13 a zt+ey=2 b z+4+3y=3n3-1

2
c 2x+e2y:—2—e2
e

15 ay=z b y==x °2Z*y:§*§ dz=12
16 a (—4,-64) b (4, —31)
8
17 a f'($)=2$*—3 b z=+v2 ¢ tangentis y=4
x

18 Ais (2,0), Bis (0, —2e)

19 a y=2a—1)z—a?>+9
b y = 5z, contactat (3, 15), y = —Tx, contactat (—3,21)

21 y=—V1dx +4v14

is the tangent to

20 y=0, y=27x+54

22 y=ce®z+e%(l—a)
from the origin.

SO y=ex y=e"

23 a Hint: They must have the same y-coordinate at = b and
the same gradient.
(:LL:i dy:egéxfl
2e 2
24 =~ 63.43°
25 a Hint: y= f(a)+ f'(a)(z —a)

b Hint: Expand f(z) =4—8(z+1)—(x+1)2+2(z+1)3
¢ Notice the first 2 terms in b are the same as the tangent line
found in part a.

EXERCISE 14B "

1 a A -local max, B - stationary inflection, C - local min.

b + - L+ f@)
—4 0 5 z
" + -1 -1+ £
-2 0 3 T
28 1) b )
stationary
inflection
0.1
- o > - »
-2 V2o -1/0 x
(0,-2)
local min. A
c d
local max.‘ f(@) f(z)
(=1,4) local
max.
2 - 0] (0,0) _
,\/5 \/5 T
-2 (e} (1,0) x
local min. (=1,-1) (1,*1)
y local min. ¥ local min.

f(z) stationary f(z)
inflection
(2,1)
- > 2
(6] 1 T

(no stationary points)

f(z)
> \ o (1,0/ -
-— >

stationary
inflection

i y

f()

(0,1) local max.

0 1\ |
Y local min. Y

local min.
b L. .
3 m:fz—, local min if a > 0, local max if a <0
a
4 a=9
5 a=-12, b=-13

a
b (-2, 3) local max., (2, —29) local min.

local maximum at (1, e~1)

a
b local maximum at (—2, 4e~2), local minimum at (0, 0)
¢ local minimum at (1, e)

d

local maximum at (—1, e)
az>0

a Greatest value is 63 when x =5,
least value is —18 when z = 2.

b Greatest valueis 4 when £ =3 and =z =0,
least value is —16 when = = —2.

9 P(z) = —923 — 922 + 92 + 2

10 a b
Yy (2,1) max. Y4(0,1) (m1) (2m1)
1 max. max. max.
y=sinz
(6] T 2w T
-1
& -1
min

(m,0)
min.

(2m,0) ¥
min.

0l<o,o>

min.




11

12

13 a

b

Hint:

Hint:

Ay local max.

2 /\(g’d‘/»)

o T 27 g

- .0
(5i7r =33 ) stationary inflection
6> 2
A local min.

(27,2)

fo——y=sin(2z) + 2cos

Find ZZ, then determine the nature of the stationary
points.

Show thatas = — 0, f(z) — —oo,

and as = — oo, f(z) — 0.

Hint: Find f’(x), then determine the nature of the
stationary points.
Show that f(z) >

Hint: 1 forall = > 0.

EXERCISE 14C.1

1 a

c
d

4 a

a —14 cms™

1 b (h+5)ms™!
5ms~! = s/(1) is the instantaneous velocity at ¢ =1 s
average velocity = (2t +h +3) ms™1,

}}in%(2t+h+3) =2t+3ms!

7Tms™

is the instantaneous

velocity at time ¢ seconds.
1 b (-8 —2h) cms™
-8 cems™! = 5/(2)

instantaneous velocity = —8 cms

—4t = s'(¢t) = v(t) is the instantaneous velocity at time
t seconds.

2v/14+h—2
%cms*2 b + cms 2

1 ems™2 =o/(1) is the instantaneous accn. at ¢t =1's

-1 oatt=2

1 . .
— cms—2 =9/(t), the instantaneous accn. at time ¢

NG

velocity at t =4 b accelerationat t =4

EXERCISE 14C.2

1 a

v(t) =2t —4 ems™!, a(t) =2 cms™?

o+ () =+ 20 [+ e
13 't [ 2 % | t
0 0 0
s(0) =3 cm, v(0)=—-4cms™!, a(0)=2cms?

The object is initially 3 cm to the right of the origin and is
moving to the left at 4 cms—!. It is accelerating at 2 cms~2
to the right.

5(2) = —1lcm, v(2)=0cms™!, a(2)=2cms 2

The object is instantaneously stationary, 1 cm to the left of

the origin and is accelerating to the right at 2 cms—2.
At t =2, s(2) =1cm to the left of the origin.
fFOo<t<?2

-1 0 3 S
v(t) =98 — 9.8t ms™!, a(t) = —9.8 ms~2

s DA o O A

s(O) =0 m above the ground, U(O) =98 ms~! skyward
t = 5 s Stone is 367.5 m above the ground and moving
skyward at 49 ms—1. Its speed is decreasing.

t =12 s Stone is 470.4 m above the ground and moving
groundward at 19.6 ms~1. Its speed is increasing.

Answers 495
d 490 m e 20 seconds
3 al2m
b s'(t) =28.1 —9.8t represents the instantaneous velocity of
the ball.
¢ t = 2.87s. The ball has reached its maximum height and is
instantaneously at rest.
d 41.5m
i 28.1ms™? i 8.5ms™! i 20.9 ms~!
s'(t) = 0 when the ball is travelling upwards.
s'(t) < 0 when the ball is travelling downwards.
f 5.78s
g s'(t) is the rate of change of s’(t), or the instantaneous
acceleration.
4 a v(t)=3t2—-18t+24ms ! a(t) = 6t — 18 ms—2
+ ., =, + ) —, + a(t)
0 2 4 t 0 3 t
b z(2) =20, z(4)=16
t=4
{ I 1=2
0 16 20 4
¢ i 0<t<?2and 3<t<4 il 0<t<3
d 28 m
_t _t
5 a vu(t)=100—40e ° cms™!, a(t)=8e ° cms~?
b s(0) = 200 cm on positive side of origin
v(0) =60 cms~!, a(0) =8 cms™2
c . d after 3.47 s
o) (ems™) o) =100
= 0‘ t?s)
6 a 2(0)=—-1cm, v(0)=0cms™ !, a(0)=2cms™2
b At t = 7 seconds, the particle is (v/2 —1) cm left of the
origin, moving right at /2 cms~!, with increasing speed.
¢ changes direction when ¢t =7, z(7) =3 cm
d 0<t<Z and 7<t< 3L
7 Hint: Assume that s(t) = at® + bt + c
s'(t) =v(t) and s"(t) =a(t)=g
Show that a = %g, b=v(0), ¢=0.
8 a 0.675s
b i S(t)=u-+at ms—' i t=—2s
a
il a=-80 ~—6.46 ms2

u
iv Hint: Substitute ¢ = —— into S(¢).
a

v If the speed u is doubled, then the braking distance is
quadrupled (22 = 4 times).

EXERCISE 14D [

1

o

dP

$118 000 b i 4t — 12, $1000s per year

dP
rry is the rate of change in profit with time

I 0<t< 3years il ¢t > 3 years
minimum profit is $100 000 when ¢ =3
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dP _ 1 19\ ~
f — =4 Profit is increasing at $4000 per year 9 ak=qgh (T) ~0.123 b 100°C
dt lt=a after 4 years. c c=—k~ —0.123
dP . . PO
— =28  Profit is increasing at $28 000 per d i decreasing at 11.7°C min~!
dt |¢=10 year after 10 years. ii decreasing at 3.42°C min—?!
dP i in—1
o —88  Profit is increasing at $88000 per fii decreasing at 0.998°C min
dt li=25 year after 25 years. 10 a 439 cm b 10.4 years
2 a iQO)=100 ii Q25 =50 iii Q(100)=0 ¢ I growingat 5.45 cm per year
i ] B ) il growing at 1.88 cm per year
i decr. 1 l;)l’llt per year ii decr. 7 units per year 11 a A0)=0
c Qt)y=——=<0 In2
LW =-— b ik:nT (~0.231)
3 a05m ii 0.728 litres of alcohol produced per hour
b t=4: 917Tm, t=8: 125m, t=12: 14.3m 12 21 5 di
c t=0: 39myear— !, t=25 0.975myear !, V2 O perradian
t =10: 0.433 m year™! 13 a rising at 2.73 m per hour b rising
dH 97.5 i ii i~
d As I = m >0 forall £ >0, the tree is always 14 b i0 i 1 i ~1.11
. =
growing. EXERCISE 14E
. 1 2501
4 a C'(z) = 0.000922 + 0.04z + 4 dollars per pair 50 items
b C'(220) = $56.36 per pair. This estimates the additional | 2 P Lmin~28.3m, c =
. . . . . z~ 7.07m
cost of making one more pair of jeans if 220 pairs are
currently being made. 14.1m
¢ $56.58 This is the actual increase in cost to make an extra .
pair of jeans (221 rather than 220). 707m
d C”(z)=0.0018z + 0.04
C”(I) =0 when x = —22.2. This is where the rate of 3 10 blankets 4 14.8 kmhfl 5 at 4.41 months old
change is a minimum, however it is out of the bounds of the 6 a Hint: V=200=2zxxXh
model (you cannot make < 0 jeans!). 100
b Hint: Show h = —- and substitute into the surface area
5 a i €4500 il €4000 . 2
id f €210.22 per kmh~? cduation.
b 1 decreasc o 2P ) ¢ SAmin ~ 213 cm?, d :
il increase of €11.31 per kmh™ 2~ 4.22 cm H
d : 5.62 cm
c d—C =0 at v= ¢/500000~ 79.4 kmh~! ;
v S
dv t 4.22 cm
6 a — =—1250 (1 - —) Lmin—?! 843cm
dt 80
b at t =0 when the tap 1 1
was first opened 7 20 kettles 8 C (ﬁ’ e 2 )
2
¢ % _ 125 L min—2 9 a Recall that Viyjinger = 7r2h and that 1L = 1000 cm3.
at 8 b Recall that SAcylinger = 2712 4 27rh.
This shows that the rate of change of V is constantly ¢ radius ~ 5.42 cm, height ~ 10.8 cm
increasing, so the outflow is decreasing at a constant rate. 10 b 0~ 191, A= 237cm? 11 b 6cm X 6 cm
7 a The near part of the lake is 2 km from the sea, the furthest 12 a 0< <637
part is 3 km. b 1=100m, z=12 ~31.83m, A= 200006366 m?
d
b d—y = 1—3012 -+ % 13 after 13.8 weeks 14 after 40 minutes
Tz
dy 15 ¢ 0=30° A~ 130cm?
- . = 0.175, helght.tf)f hill is increasing as gradient 16 a Hint: Show that AC — % % 27 x 10
dy| 1% POSIEve: b Hint: Show that 277 = AC
T L= —0.225, height of hill is decreasing as ¢ Hint: Use the result from b and Pythagoras’ theorem.
Tle=13 gradient is negative. 012 o2
top of the hill is between x = % and x:l%. d V= %F (%) 4/ 100 — (%) e 0~ 294°
¢ 2.55 km from the sea, 63.1 m decp 17 1hour 34 min 53 s when 0~ 36.9° 18 9.87m
— Lp2
8 ak=gn2~00139 EXERCISE 14F —
b i 20 grams ) il 14.3 grams i 1.95 grams 1 a is decreasing at 7.5 units per second
¢ 9 days and 6 minutes (216 hours) 2 increasing at 1 cm per minute
P -1 B -7 -1
d i —0.0693 gh dW i —2.64x107" gh 3 a 47w m? per second b 87 m? per second
e Hint: You should find = 10 In2 x 2067% In 2t 4 increasing at 6 m? per minute

50
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5 decreasing at 0.16 m® per minute 6 2—?? cm per minute 13 b k=9
14 a z(0)=3cm, 2/(0)=2cms™ !, 2”(0)=0cms 2
7 Lé/g /2 7.22 cm per minute © 3 ) ©
250 L b t=2Z%s and =Fs c 4cm
8 decreasing at 53~ ~ 19.2 ms 15 6 cm from cach end
9 a 02ms™! b & ms! 1
16 a Yy = 3 x>0
. V2o T
10 decreasing at 755 radians per second . .
¢ base is 1.26 m square, height 0.630 m
11 increasing at 0.12 radians per minute 1 360
-1 —2
17 a v(t) =154+ ——5 ems™ ', a(t) = ——; cms
REVIEW SET 14A I (t+1) (t+1)

b At t = 3, particle is 41.25 cm to the right of the origin,

— _ _ _ .2
1 ay=de+2 by=dzt+din2—4 cy=e moving to the right at 16.88 cms™! and decelerating at

2 a:%, b:_% 1.41 cms—2.
3 aa=-6 ¢ speed is never increasing

b local max. (—v/2, 4v/2), local min. (v/2, —4v/2) 18 A<l l) 19 20VT0 A 911 m per minute

c Ay 27 e 3

(—/2, 4/2) y=a’—6z 20 a V(r)= %Trr:” m3
dr s N
- % Fer ~ —0.006 79 m min
- 5 -

REVIEW SET 14B

2
V2, -4/2) 1 az=1 b ex—2y=e— — cy:161‘—%
A €

2 a=-14, b=21
4 ay=1z—L4 (or z-5y=11) b y=—dz+14 3 a f3)=2 f'3)=-1 b f(x)=2?—Tz+14

5 3125627 units? 6 a=64 7 P(0,7.5), Q(3,0) 4 a 2x+3y= %" +2v3 b V2y—4dz=1-2r
4y = — _ _ _1
9 3z —4y=-5 5 p=1 ¢g=-8 6 (—2,—25) 7a=3
10 a x'> 0' ) c 8 a local minimum at (0, 1) c f'(z)=¢e"
b Sign diagram 0;(f) (z) 9 (0, Ind—1)
| + z
= 10 a y-intercept = —35 b z=1, %, 5
O' ) i ¢ local maximum at (2, 9), local minimum at (1—;, 712#.70
f(z) is increasing d
Y local .
for all z > 0. I g%mx //y2ﬁwﬁ+mz35
d normalis z+2y =3 - /‘\% 5 R
A e~ K
11 a b y= —T+ - local min. ‘
k k 13 100
¢ A(2k, 0), B(O, E) -35
d Area = 8 units?
< > e k=2
- i 11 BC = £410 unjts
12 60 b i 424 il 201
12 a o(t) = (61>~ 18t+12) cms~ ', a(t) = (12t—18) cms—2 a them P styeas s S0 vean
¢ i 16 cm per year il 1.95 cm per year
— t - t
+ — i ”t() : u “r” 13 a v(t) = —8e 10 — 40 ms~ 1
0 0 13 ' a(t) = 2e~T0 ms=2 {t> 0}

b s(0) = —5cm (5 cm to the left of origin)
v(0) = 12 ecms™ ! towards origin
a(0) = —18 cm s72 (reducing speed)
¢ At t =2, particle is 1 cm to the left of the origin,
is stationary and is accelerating towards the origin.
dt=1 s=0 and t=2, s=-1

b s(0)=80m c
v(0) = —48 ms!
a(0) = 0.8 ms™?

d t = 10In2 seconds

e t=2
t=0 - t=1
- ‘ T . . - 14 a i $535 i $1385.79
-5 -1 0 s
. i —$0.267 per kmh—1! i $2.33 per kmh~!
f 1<t< 15 and t>2 ¢ 51.3 kmh—!
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_ L _ 1 ii n A Ay
15 a v =3- 7= a(t) = T 5 | 0.40000 | 0.60000
10 0.45000 | 0.55000
+ ) + o) 50 | 0.49000 | 0.51000
0 t 0 ¢ 100 0.49500 | 0.50500
500 0.49900 | 0.50100
b z(0) = -1, v(0)=2.5 a(0)=0.25 1000 | 0.49950 | 0.50050
Particle is 1 cm to the left of the origin, is travelling to the 10000 | 0.49995 | 0.50005
right at 2.5 cm s—1, and accelerating at 0.25 cm s—2,
¢ Particle is 21 cm to the right of the origin, is travelling to the iii n Ar Ay
right at 2.83 cms—!, and accelerating at 0.009 26 cms~2. 5 0.54974 | 0.74974
d never changes direction e never decreasing 10 0.61051 | 0.71051
2 1_ 9 50 0.65610 | 0.67610
16 b A =200z - 22° — 57w ¢ 100 | 0.66146 | 0.67146
500 0.66565 | 0.667 65
1000 0.66616 | 0.667 16
28.0m 10000 | 0.66662 | 0.666 72
56.0m v - a5 i
17 a v(0)=0cms™ !, v(3)=—moems™!, v(1) =0cms™, 150 ggégig 8?;?2;
v(3) =mems™!, v(2) =0cms™! 50 | 0.73851 | 0.75851
b 0<t<1, 2<t<3, 4<t<5, ct. 100 | 0.74441 | 0.75441
So, for 2n<t<2n+1, ne{0,1,2 3, ..} e | Qs ) ey
1000 0.74947 | 0.75047
18 s & (1 B L) 19 3.60 ms—1 10000 | 0.74995 | 0.75005
2 V3 1
20 increasing at 0.128 radians per second b i % n % i % v % ¢ area = at1
21 a ﬁw ems—1 b 0cms—1 5 a n Rational bounds for 7 b n = 10000
2 10 2.9045 < 7 < 3.3045
2 a a 50 | 3.0983 < m < 3.1783
22 a i V= T »” il when y =0, z= ) 100 | 3.1204 < 7 < 3.1604
% 200 3.1312 < 7 < 3.1512
b iy=——z+b ii when =0, y=2» 1000 3.1396 < 7 < 3.1436
a

Hint: Let P” be the point on the line y = —b where
the distance to P is shortest.
Show that FP = P”'P.

¢ i Hint: Show that AFPP’ = AP"PP’.

ii Hint: Show that the tangents meet at (a ;r c’ Z—Z) .
EXERCISE 15A.1 I
1 a i 0.6 units? il 0.4 units? b 0.5 units?
2 a 0.737 units? b 0.653 units?
3 n AL Ay converges to %
10 | 2.1850 | 2.4850
25 | 2.2736 | 2.3936
50 [ 2.3034 | 2.3634
100 | 2.3184 | 2.3484
500 | 2.3303 | 2.3363
4 i n AL Ay

5 0.16000 | 0.36000
10 0.20250 | 0.30250
50 0.24010 | 0.26010
100 0.24503 | 0.25503
500 0.24900 | 0.25100

1000 0.24950 | 0.25050
10000 | 0.24995 | 0.25005

10000 | 3.1414 < w < 3.1418

EXERCISE 15A.2 —

1 a

(1]

1
c fo vz dr ~ 0.67

1423

7

-

i=1

AY
1.0
0.6
0.4
0.2
B T
Y
n Ar Ay
5 0.5497 | 0.7497
10 0.6105 | 0.7105
50 0.6561 | 0.6761
100 | 0.6615 | 0.6715
500 | 0.6656 | 0.6676
2 =l 2
Ap == \/1 3. Ay ==
L= ;} + v=-
n AL AU
50 3.2016 | 3.2816
100 | 3.2214 | 3.2614
500 | 3.2373 | 3.2453
[ZVTT a8 dem 324
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3 a 3 dy — 2e2e+1 f62z+1 doe — 1 e2r+1l 4 ¢
dx
d
a ¥ —80221+1)3 [(r+1)Pde=1@z+1)t+e
dx
d
. Sd—z:%ﬁ, fﬁdm:%mﬁ—‘rc
=3 3 d 9
v 6 L —_ , =———=+c
dz 2x\/T VT
b upper ~ 1.2506, lower ~ 1.2493 dy . . _ 1
¢ upper ~ 1.2506, lower ~ 1.2493 7 dz —2sin2z, fsm 2zdr = —zcos2r e
2 dy
d j g€ ° dz~24999 compared to V2 & 2.5066 8 = —5cos(1 — 5z),
4 a 18 b 4.5 c 2w

EXERCISE 15B I

x? z3 x0 1
1 a i — i — iii — iv ——
2 3 6 x
1 4
Vogg M 327 vii 2,z
X
n+1
b The antiderivative of x (n # —1).
+1
1.
2 a i fe®™ il L5 i 27 v 1000017
v Llem vi 3¢°
™

1

b The antiderivative of ek is Ee
d 3 2 2
— (2% +2°) = 3z + 2z
dx

the antiderivative of 6x2 4 4x = 23 4 222
b i(e3z+1) — 3e3z+1

T

the antiderivative of e3%+1 =

¢ —(ovE) =3VE

the antiderivative of /x = %xﬁ

1 3z+1
36

d
d —(2z+1)* =82z +1)3
dx
the antiderivative of (22 +1)3 = é(Zw +1)4

EXERCISE 15C

1 a % units? b 2— units? c % units2
3 a 3% units2 b 24% units? c 72%‘1‘@ units2
d = 3.48 units? e 2 units?
. el
4 c i fo (—2?)dx = f%, the area between y = —x?

and the z-axis from z =0 to z =1 is % units2.

1
ii fo (2% —z)do = —%, the area between y =z

and the z-axis from =0 to z =1 is % units2.

iii IEQ 3z dxr = —6, the area between y = 3x

and the z-axis from z = —2 to z =0 is 6 units?

d —7m
EXERCISE 15D I
dy

_ .6 6 7. 1.7
1 577;3, fz da:77:c +c

d
2 —y:3w2+2z, f(3z2+2$)dz:a:3+z2+c
dx

2 _

fcos(l —b5z)dx = f% sin(1 — 5z) + ¢

9 [(2z—1)(a?

—x)?dr = %(:ﬂ —z)3+c

dy -2 1 1
11 — = N der = —=v1—4zx+¢
dr Iz /\/1—490 2
EXERCISE 15E.1
PRI 2
1 a ?7377+2w+c b 2% —x* 223 -7z +c

3
2.2
—35x° +c

2 a —3coszx—2xr+c

¢ —cosx — 2sinx + e*

i 5e” + %a:‘l

+c

e %m3f%x2+sinm+c
3 a 1m3+%x272x+c b

1
c 2"+ —+c d
T

e %m3+2m2+w+c f

3 1
g % 2 _22? 4¢ h
i 4x4+m + 35 m2+r+c
3
4 a 2z’ +isinz+c
¢ 3sint4cost+c
5 ay=6x+c
c y—ﬁx x—%ws—i-c
e y=2*—-5x+c

6 a f(m):mf2x2+%m3

3
z? —4T+c

b f(z)=2

d 3e”+l 34 ¢

-

f 22z 2 +222+¢

12 1.3
R = — et
h + 3(13 et +c

b 2z2 — 2sinz +c
d %m3\/§+ 10cosz + ¢

f cosx+%x\/§+c

9 3 1

5902 —2z2% 4+¢

_1
3

1
—2x —8z% +c¢

1
%m3+2x7—+c
T

[N

1
2

1 _
22 + 8z f%m +c

b 2et+4cost+c

b y:%m3+c
1

d y=——+c¢
T

fy=a*+24c

+c

c f(a:):m+g+c

EXERCISE 15E.2 I

1 a f(x)=22—-x+3

c f(z)=e®*+2yz—1—e d f(z)=

3

2 a f(x)= ?74s1nm+3

b f(z)=a%4+22-7
%x2—4\/5+%

b f(z) =2sinz + 3cosz — 22
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Answers

3 a f(w):%x3+%w2

5 3
b f(z) =4x> +4z°

¢ f(zr) =—cosz—=x

EXERCISE 15F I

1 a %(2x+5)4+c

—2
c —
32z 1P ¢
3
e 2(3z—4)% +c
g —3(1-2)+c
2 a —%Cos(Sac)—‘rc

¢ 6sin (%) +c

e —cos(2x+%)+c

+z+3
—4x+5
+4 d f(x):%xsfl—;m+5
L
c
2(3— 2z)
d 3—12(4m73)8+c
—4y/1 -5z +c
—2v3—4x+c

—% sin(—4x) +z + ¢

—% cos(2z) +e %+ ¢

- & T T -

3sin (% —:c) +c

g Llsin(2z) — % cos(2z) + ¢

2

h —2cos(3z) + % sin(4z) + ¢

3

i L sin(8z) +3cosx+c

16

3
3 y:%(2.7077)2 +2

4 (-8, —-19)

1.5 1,4, 1.3
b5:73 2%+ 32 +c

5 a $(2z—-1)>+c

c —1—12(1—3x)4+c d x—%x3+%x5+c

3

e —856-1)° +c f lo7 4325 +ad4a+c
6 a 26””—0—%621—&—0 b %e5z’2+c

c —%6773E+C d %eQz—i—Qx—%e’h—i-c

e —%e*2m—4e*z+4x+c f %w2+5(1—m)’1+c
7 y=z—2"+ L2+ 1
8 p=—1, f(z) = }eos(3a) + 4
10 f(z) = —e 2% +4

3
_2. % 1,4 1,-4_ 2

EXERCISE 15G

1 a [!Vrde=14,

bfolgﬂdm:%’ f
2 a% b% c
3 a —4 b 625 ¢
5 ail b 2

e 11 f 62

i ~152 j 2
6 m=-—1 or% 7
8 a 6.5 b -9 c
9 a 27 b —4 c
10 a [ f(x)de b
11 a -5 b 4
12 a 4 b 0 c

S (—vayde = -1

(—27)dx = f%

d 1

1
25 4a§ b

ce—1 (=172
g In3 (~1.10)
kK e—1 (~1.72)

— = a win
Wl Nl= =

aZ+i bz
d —25

0
5
T d iy

flg g(z)dx

REVIEW SET 15A s

1 a
T
. lower rectangles Ly upper rectangles
44 4
3 3
2 2
1 1
:O‘ 02040608 1 } = O' 02040608 1 %
b n A Ay
5 2.9349 | 3.3349
50 | 3.1215 | 3.1615
100 | 3.1316 | 3.1516
500 | 3.1396 | 3.1436
Yoy
c —— dr ~ 3.1416
1+ 22
0
2 a 2w b 4
3 ag8/r+c b —%cos(4x—5)+c c —%64739:4-0
4 a 123 b 2

7 ay=3%a5—22%+a+c b y=400z+40e

9 a:ln\/i

b 3z 4 26y =84

+c
8 f(z) =33 +52% +6x—1

10 a f(w):%x4+lx3—ma:+3

3 3

11 a €37 +6e2® +12e"+8 b 1ed43e2+12e— 7%

REVIEW SET 15B I

2
1 aA=1 B=2% b [ (4—a?)de~ 2
2 a 2 %+3zx+c b %m\/_f2\/5+c

¢ 9r 4 3e2r1 4 ie4z*2 +c

3 f(z)=4a%— 322 420+ 22 4 2(V5-72)
5 dii(?)mQ + )% = 3(32% + 2)2(6z + 1)

f(3x2 +2)2(6z + 1) doe = %(3:02 +z)3+¢
6 a6 b3 7 f(3)=3-% 8 7
9 m(2x+3)"+l+c, n# —1

1
10 a=1, f/(z) =2y + —= isneverOas \/z >0 forallz
3z

f'(z) >0 forall z

11 a=0 or £3
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Answers

EXERCISE 16A I——

1 a 30 units? b %units2 c %

2 a 1 units? b 2 units?

3

d (e—1)units? e 20% units?

g %unitsQ h 4% units2
22
3 S units

EXERCISE 16B I

1 a 4% units? b (1 + e~2) units?

units?2  d 2 units?
c 63% units2
f 18 units?

2
i (2e— ;) units?

52
c 127 units

d 2 units? e 2% units? f (5 —1) units®
2 10— units?
3 a . b (1, —2) and
Y y=12%—3z ( )
(3,0)
y=z—3 1 .
¢ 13 units
< 8] -
x
1.2
4 3 units
5 a . -
Ay y=e"—1
y=2
y=2—2¢ "
In2,1
(0.0) S
N 0 I
'Z'J';":l' """"""""""""""""""""""""""""""
Y

b (0,0) and (In2, 1)
¢ enclosed area = 3In2 — 2 (=

12
6 5 units
7

0.0794) units?

AY
(CR))
y=4z?
- « -
y=2x
y enclosed area = % units?

8 a Rearranging
2492 =9 gives
y=+v9 — a2

< The upper half has
y >0, so
=9 — 22
3 Z £
s
b T
9 a 40— units? b 8 units? ¢ 8 units?
10 a Ciis y=sinz, Cois y=3sinz b 4 units?
11 a fg ) dz = — (area between = =3 and = =5)
b fl ) dx — fS f(x) dx+f5 (z) dz
12 a Ciis y= 5 + 5 cos(2z), Cais y = cos(2z)

b A(0,1), B(Z,0), C(%

,0), D(3%,0), E(m, 1)

13

¢ Area = fow (% + 3 cos(2z) — cos(2x)) da
If h(z)>0 on a<z< h(z) and

the z-axis is f; h(z) dz. If h(zx) <0 on a < x < b, the

b, the area between y =

area between y = h(z) and the z-axis is f: — h(z) dz.

the area between y = h(z) and the z-axison a < z < b

is [V ()] da.
Letting h(z) = f(z) — g(z), the area between
= f(z) —g(z) andthe z-axis y =0 on a <z <b is

b
Y 1£(@) - g()] da.
Equivalently, the area between y = f(x) and y = g(z)

a<z<bis fab |f(z) — g(x)| da.

14 b~ 1.3104 15 a =3
EXERCISE 16C.1 I
1 110 m
2 a i travelling forwards
ii travelling backwards (opposite direction)
b 16 km ¢ 8 km from starting point (on positive side)
3 a 50 velodity (kin h11) b 9.75 km
40[
30
20
10
“O] 2 4 6 8 10 12 14 16 18 20
t (mins)
EXERCISE 16C.2 I
1 a s(t)=t—t>+2cm b%cm ¢ Ocm
2 a s(t)=3t3—3t2—2tcem b 5% cm
c 1% cm left of its starting point
V342
3 -z m
4 a s(t)=32t+2t2+16m
b no change of direction
so displacement = s(¢1) — s(0) = fo (32 +4t)dt
¢ acceleration = 4 ms™2
a 41 units b 34 units 6 b 2m
7 a 40ms~! b 47.8 ms! ¢ 1.39 seconds
d as t — oo, v(t) — 50 from below
e a(t)=5e95 andas e® >0 forall z,
a(t) > 0 for all ¢.
f g ~134.5m
8 a v(¢) ! +1
v(t) = ms
(t+1)2
1
s(t)y=——+4+t—1m
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¢ The particle is % m to the right of the origin, moving to the
right at % ms~!, and accelerating at 2—27 ms~2,
t2 1
9 a v(t)=— —3t+45ms™
®) =35

b fOGO v(t) dt = 900. The train travels a total of 900 m in

the first 60 seconds.

_L
10 a Show that v(t) = 100 — 80e 2" ms~! andas ¢ — 00,
v(t) — 100 ms™1.
b 370.4m

REVIEW SET 16A I
1 A= ["[f@)-g@)de+ [ g(z) — f(2)] da
+ [ f(@) — g(a)) da
2 a2+nm b -2 c
3 No, total area shaded = f_ll f(z) de — f13 f(z) d.

4 k=16 5 4.5 units?
6 a
+ — + ()
2 4 t (seconds)
0

b The particle moves in the positive direction initially, then at
t=2, 6% m from its starting point, it changes direction. It

changes direction again at ¢ = 4, 5% m from its starting
point, and at ¢t =5, itis 6% m from its starting point again.
2 1
7 (3 —In4) units? 8 2.35m
REVIEW SET 16B I
1 a v(t) =3t2 30t +27 cms™!
b —162 cm (162 cm to the left of the origin)
2

¢ (1— %) units?
3 a=1In3, b=1n5

4 a a(t)=2—6tms2 b st)=t2—t3+cm
¢ —4m (4 m to the left)

5 k=3 6 m=1% 7 (£ - 1) units?

8 a v(0)=25ms™!, v(3)=4ms"!

b as t — oo, v(t) — 0 from above

d 3 seconds e a(t) =
_1
f k=<
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INDEX

absolute value
acceleration
addition rule
algebraic test
amplitude
antiderivative
antidifferentiation
arc

arc length

area of sector

area under curve
associativity law
average acceleration
average speed
average velocity
axis of symmetry
base

base unit vector
binomial

binomial coefficient
binomial expansion
binomial theorem
Cartesian equation
Cartesian plane
chain rule

change of base rule
chord

closed interval
coincident lines
column matrix
column vector
combination
commutative law
complement
completing the square
composite function
concave downwards
concave upwards
conic sections
constant of integration
constant term
cosine

cosine function
counting numbers
cubic function
cycloid

definite integral

46
446
345,424
37

228
416
416

205
202, 205
205
410, 438
25

381
337

381

76

107

281

270
261,273
270

273
296

17

350

147
205, 338
16

328
307
307
267

25
18,25
67,81
49

76

76

75

425

156

208
236

12

65

228
413,431

degree

degree of polynomial
DeMorgan's law
derivative

derivative function
determinant
differential equation
differentiation
discriminant

disjoint sets
displacement
displacement function
distance between points
distance travelled
distinct real root
distributive law
division algorithm
divisor

domain

double root

element

empty set

equal matrices

equal vectors
equation

equation of a line
equation of normal
exponent

exponential equation
exponential function
factor

factor theorem
factorial numbers
finite set

first derivative

first principles formula
function

function value
fundamental theorem
of calculus

general cosine function
general form

general sine function
general tangent function
general term
geometric test

global maximum
global minimum
golden ratio

gradient

202
156
25
342
340
324
399
344
73,85
14,22
446
380
176
444
73

25
159
158
36, 43
73

12

12
309
282
37,72
177
370
107
116
118
162
169
259
13
363
343
37

41

419
236
177
232
239
273

37
375
375

94
177

gradient function
gradient of tangent
gradient of normal
gradient-intercept form
horizontal asymptote
horizontal line test
idempotent law
identity function
identity law

identity matrix

image

indefinite integration
index

index laws

inequality

infinite set

initial conditions
instantaneous acceleration
instantaneous velocity
integer

integral

intersection

interval

interval notation
inverse function
inverse operation
invertible matrix

laws of logarithms
leading coefficient
length of vector

limit

linear factor

linear function

local maximum

local minimum

lower rectangles
magnitude of vector
major

mapping

matrix

matrix algebra

matrix multiplication
maximum point
maximum turning point
maximum value
mean line

member

midpoint

minimum point
minimum turning point

340
339
370
177
118, 149
39

25

55

25

320

41

422
107
108

72

13

383
381
381

12

422
13,22
16

43

54

54

324
135
156
280, 284
335
162
41,65
375
375

411
280, 284
205

37

307
314,320
315
228

76

95

228

12

176, 182
228

76
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minimum value
minor

modulus

motion graph
multiplicative inverse

mutually exclusive sets

natural domain
natural exponential
natural logarithm
natural numbers
negative definite
negative integer
negative matrix
negative reciprocals
negative vector
non-singular matrix
normal to a curve
number line
one-one function
open interval
optimisation
optimum solution
order of matrix
parabola

parallel lines
parallel vectors
parametric equations
Pascal's triangle
period

periodic function
periodic phenomena
permutation
perpendicular bisector
perpendicular lines
point of discontinuity
point of inflection
polynomial
polynomial function
position vector
positive definite
positive integer
power of a binomial
power rule

principal axis
principal domain
product principle
product rule

proper subset
quadrant

quadratic equation

95
205
46
380
323
14,22
43

123
142

12

85

12

314
177
283
324
370

15

39

16
95,393
393
307

75
177,328
292
216,296
271
228
228
226
262
182
177
335
369
65,156
156
280, 289
85

12
270
424
228
241
256
352

13
210

65

quadratic formula
quadratic function
quadratic graph
quartic function
quotient

quotient rule
radian

radical

radical conjugates
radius

range

rate

rational number
real number

real polynomial
relation

remainder
remainder theorem
repeated root
resultant vector
Riemann integral
root

row matrix

row vector

scalar

scalar multiplication
second derivative
sector

segment
self-inverse function
set

sign diagram

sign test

sine

sine curve

sine waves
singular matrix
solution

speed

square matrix
standard basis
stationary inflection
stationary point
subset

summation notation
surd

tangent

tangent function
tangent to a curve

union

69
65,75
85

65

158

353

202

102

105

202

36, 43
336

12

12

156
17,37
158

167

73

294

434
51,65, 162
307
307
280, 287
287
363,377
205

205

57

12
51,376, 383
384

208

230
227

324

162
337,384
307

281

375

375
13,21
156

102

338
209, 238
369
13,22

unit circle

unit vector
universal set
upper rectangles
variable

vector

vector equation of line
velocity

velocity function
Venn diagram
vertex

vertical asymptote
vertical line test
vertical translation
z-intercept
y-intercept

Zero

zero matrix

zero vector

208
281, 284, 292
18

410

37,156

280

296

446

381

21

76

149

37

232

76

76

51,162

313

282
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